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ABSTRACT

We designed a complete acquisition-reconstruction frame-
work to reduce the radiation dosage in 3D scanning transmis-
sion electron microscopy (STEM). Projection measurements
are acquired by randomly scanning a subset of pixels at every
tilt-view (i.e., random-beam STEM or “RB-STEM”). High-
quality images are then recovered from the randomly down-
sampled measurements through a regularized tomographic
reconstruction framework. By fulfilling the compressed sens-
ing requirements, the proposed approach improves the recon-
struction of heavily-downsampled RB-STEM measurements
over the current state-of-the-art technique. This development
opens new perspectives in the search for methods permitting
lower-dose 3D STEM imaging of electron-sensitive samples
without degrading the quality of the reconstructed volume.
A Matlab code implementing the proposed reconstruction
algorithm has been made available online.

Index Terms— STEM tomography, dose reduction, com-
pressed sensing, random-beam scanning, regularized recon-
struction.

1. INTRODUCTION

Scanning transmission electron microscopy (STEM) is a pow-
erful imaging method that permits visualization of biological
structures at the nanoscale [1]. In 3D STEM, a focused elec-
tron beam scans the sample in a raster and the transmitted
radiation is detected. The sample is rotated over a range of
tilt angles and projection images from multiple directions are
collected (Figure la-b). A volume is then computationally
reconstructed from the set of projection measurements.
STEM offers several advantages over conventional elec-
tron tomography, such as a better signal-to-noise ratio (SNR)
and enhanced contrast [2, 3, 4]. Yet, it suffers from the same
experimental limitation: high-resolution imaging requires
large electron radiation dosage, to which most biological
specimens are extremely sensitive. A trade-off between the
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reconstruction quality and the sample integrity is thus de
rigueur when optimizing 3D STEM imaging. Various meth-
ods have been developed to permit lower-dose 3D STEM
acquisition without degrading the quality of the reconstructed
volume. These techniques can be categorized according to
whether the dosage reduction is achieved by angular down-
sampling or spatial downsampling [5].

Tilt-downsampling (T-DS) approaches rely on algorithms
that reconstruct a tomographic image from a reduced number
of angular views (Figure 1c) [6, 7, 8, 9, 10, 11]. By con-
trast, image-downsampling (I-DS) techniques aim to reduce
the electron coverage of individual tilt images. One way to
achieve this is by decreasing the per-pixel dwell time or the
beam current density [12]. Alternatively, one can scan only a
fraction of the pixels following a certain downsampling pat-
tern, e.g. uniform or random (Figure 1d-e) [13, 14].

The recovery of randomly-downsampled STEM images
has been the pioneered work of a recent publication by Saghi
et al [5]. The authors proposed to perform the reconstruc-
tion in two steps. They first filled in the missing data through
TV-inpainting in order to produce conventional projections.
They then used an iterative algorithm with TV-regularization
for the tomographic reconstruction of the projection views.
By doing so, they could demonstrate the feasibility of further
reducing the electron dosage in STEM through the random
scanning of a subset of pixels. Yet, as we shall later argue,
their reconstruction algorithm does not take advantage of the
theory of compressed sensing (CS), which predicts that sparse
signals can be acquired with a minimum number of measure-
ments provided that proper recovery methods are used [15].
Therefore, although CS may provide an ideal framework for
minimizing the electron dosage in tomographic STEM imag-
ing, its potential in this regard has not been entirely exploited
yet.

To address this gap, we have designed an acquisition-
reconstruction framework named random-beam STEM (or
“RB-STEM”) which take advantage of the principles of CS
to tomographic STEM. We present here the regularized to-
mographic reconstruction framework we have designed to
reconstruct high-quality images from incoherent RB-STEM
datasets. We demonstrate through simulations that the pro-



posed algorithm has the potential to achieve superior recon-
structions of highly detailed objects imaged at low electron
dose.
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Fig. 1. Dose reduction approaches in cryo-STEM. (a) Illus-
tration of a conventional cryo-STEM set-up. (b) Full tomo-
gram (horizontal-axis: projection plane coordinates, vertical-
axis: tilt-angles). (c)-(e) Effect on tomogram of the consid-
ered downsampling approaches (shown here with a 50% DS
ratio). DS: downsampling, 7-DS: tilt-downsampling, I-DS:
image-downsampling.

2. RB-STEM: ACQUISITION

RB-STEM consists in the random scanning of a subset of
pixels for every tilt view (Figure le). Similarly to conven-
tional STEM, the scanning process in RB-STEM mode cor-
responds to the straight-line transmission of an electron beam
through the sample. It can be thus mathematically described
through the X-ray transform P : Ly (R?®) — Lo(R? x [0, 7)),
which maps a 3D function f(x) into its 2D line-integral im-
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ages along different tilt angles, i.e.:

P{f(x)}(y;0)

= / f@)d(y1 — x1cos — xosinf,ys — x3)de. (1)
R3

Here 6 € [0,7), while x = (21, 22,23) and y = (y1,¥2)
specify the object and projection coordinates, respectively.
The §(x) denotes the two-dimensional delta function.

3. RB-STEM: RECONSTRUCTION

The task is to reconstruct a three-dimensional signal f from
a set of RB-STEM measurements g(y,, 6;), with (y;,0;) €
Y x©. Herei € {1,2,---, M}, where M corresponds to the
number of projection measurements. The set Y contains the
different positions of the STEM gun scans on the projection
plane. The set of all tilt angles is collected in ©.

3.1. Discretization Scheme

We first need to discretize the signal and the imaging operator
in order to formulate the reconstruction as an inverse problem.
The standard approach consists in fixing the reconstruction
space to functions of the form [16, 17]:

fl@) =" crp(@—k).

ke

2

The function f(z) is then described by its coefficients cy.
The (p(~ — k) S LQ(RS) with k = (k‘l, ]{ig, k‘3) e 73
are appropriate functions, while Q {—=Ny---Ni} x
{—Ny--+No} x {—N3--- N3} specifies the support of the
object (N1, No, N3 € N). By the linearity and the pseudo-
shift-invariance of the X-ray transform [18], we then model
the effect of the projection operator P by:

Pf(y;0) =g(y;0)

= chPgo(yl —kycosf — kosin®, yo — ks; 0).
keQ

3)

We then write the STEM imaging model in matrix form as:

g=Hec. @

Here, g € RM with entries [g]; = g(y,,0;), while ¢ € RY
is a vector representation of the coefficients (Eq. (2)) indexed
by k with N = (2N; + 1)(2N2 + 1)(2N3 + 1). The entries
of the system matrix H € RM*N are [H]; x = Pp(yi1 —
kl COSs 91 — k‘g sin 92‘, Yi,2 — ]{3; 01‘), where [y]z = (%‘,1, yi,g).

In RB-STEM, the acquired measurements positions
(y;,0;) are predetermined by a random sub-scanning pat-
tern .S. We can thus denote the set of positions by (y;,0;) €
Ys x ©g where the elements in the set Ys x O are specified
by the sampling pattern S.



3.2. Reconstruction Algorithm

The task of reconstructing heavily downsampled RB-STEM

measurements is a strongly ill-posed inverse problem. Nev-

ertheless, the theory of compressed sensing asserts that under

appropriate conditions, one can solve this problem through

l1-minimization [15]. The matrix formulation is as follows:
min ||Lcl|; subjectto | He — g <, %)
ceR”

where L specifies the sparsifying operator that transforms the

signal. The equivalent Lagrange formulation of the optimiza-
tion is:

J(c) = min

ceR™

1
{JImeg el ©

We define the auxiliary variable u = L ¢ and rewrite the
optimization problem as a constrained optimization problem
[19, 20]. The scaled augmented Lagrangian functional is then
given by:

1 "
Lu(e,u,d) = S He—gl* + Aufy + S u—Le+d|*.
(N

where d is the Lagrange variable. This optimization problem
is decomposed into a set of simpler ones by using the alter-
nating direction method of multipliers (ADMM) [19, 20]:

(a)
(0)

dk+l — gk + #(LCkJrl _ uk+1) (C)

crtl « argmin £,,(c,u”,d*)
C

uf*! « argmin £, (c**1, u,d*)

®

Eq. 8(a) is a quadratic minimization with respect to c. The
critical point of the cost functional is the root of its gradient
function, i.e.:

c=(HH+uL'L) (H'g+uLT (u+d). (9
Since the matrix (HTH + ,uLTL) is not directly invertible,
we use a conjugate gradient algorithm to minimize Eq. 8(a).

The solution of Eq. 8(b) is a simple point-wise soft-
thresholding operator,

u ! = prox, (Lt —d"). (10
m
Finally, the last step (Eq. 8(c)) corresponds to an update of the
Lagrange parameter.

4. EXPERIMENTS

We compared our integrated framework for the reconstruction
of randomly-downsampled STEM measurements to the prior
approach proposed in [5].
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4.1. Simulation Conditions

Experiments were performed using a 512 x 512 x 256 ground-
truth volume depicting the flagellar pocket of a trypanosome
(Figure 2a). All simulations were implemented in Matlab
(MathWorks, Natick, MA, USA). Two variants of the pro-
jection operator were coded to simulate the acquisition pro-
cess: one using Kaiser-Bessel window functions (KBWF) as
discretizing functions and one based on B-splines [21]. This
permits the selection of distinct operators for the acquisition
and reconstruction tasks, hence reducing the risk of commit-
ting an “inverse crime”.

To mimic the “missing cone of information” effect, we
considered an angular coverage of (—70°; 4+70°), with an an-
gular increment of 1°. Random image-downsampling (I-DS)
was achieved by applying a subsampled binary mask over the
simulated projection measurements. The considered random-
ized regime followed an uniform distribution.

Our reconstruction framework was implemented as de-
scribed in Section 3.2. Isotropic total-variation (TV) regular-
ization was used to promote sparsity. The pioneer algorithm
was reimplemented as described in [S]. The optimization of
the hyper-parameters was performed by visual assessment.

4.2. Reconstruction Results

Figure 2b-e presents xy-orthoslices views of the reconstruc-
tions of RB-STEM data achieved by both frameworks at 50%
and 20% downsampling ratios. The corresponding Fourier
shell correlation (FSC) are displayed in Figure 2f. Visual and
quantitative analysis of these results indicate that, at equiva-
lent dose reduction, the proposed RB-STEM reconstruction
algorithm significantly outperforms the state-of-the-art algo-
rithm. Finer details (e.g., filament-like structures) can be visu-
ally retrieved from the reconstructions achieved by our frame-
work, at both 50% and 20% downsampling. In addition, the
FSC curves indicate that the proposed algorithm achieves sig-
nificantly higher resolution at both sampling levels. Two main
reasons might be put forward to explain those improvements.

First, the proposed RB-STEM algorithm performs the to-
mographic reconstruction in a single, global fashion, as pre-
scribed by the theory of compressed sensing. Significant ad-
vantages follow, such as the fact that combining more data
provides more information about the object of interest. Ad-
ditionally, the influence of sparsity increases with the dimen-
sionality.

Second, as explained by the authors themselves in their
discussion [5], their reliance on an intermediate T V-inpainting
step limits the capacity of their framework to reconstruct
fines structures when only few pixels are scanned. The pri-
mary limitation is that performing TV-inpainting on strongly
downsampled measurements tends to introduce important
staircase artifacts in the restored images. In contrast, our
approach is not limited by the morphology nor the fineness of
the structures to be imaged. This translates into reconstruc-
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Fig. 2. Comparison of the proposed algorithm with the exist-
ing algorithm for the reconstruction of synthetic random I-DS
projection measurements of 7. brucei. (a) xy-orthoview of the
ground-truth volume. The scale bar indicates 500nm. (b)-(e)
Reconstructions achieved by the two algorithms from 50%
and 20% randomly-downsampled RB-STEM measurements.
(f) FSC curves of the reconstructed volumes for both algo-
rithms at 50% and 20% downsampling. The spatial frequency
at which the FSC curve falls below a certain FSC criterion
(commonly fixed at FSC=0.5 in the community) indicates the
achieved resolution.
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tions of highly-detailed specimens that are globally more
robust to the electron dosage reduction.

Finally, our approach also simplifies the optimization pro-
cedure as it only requires the optimization of a single hyper-
parameter. The Matlab code implementing the proposed re-
construction algorithm is available online.!

5. CONCLUSION

The proposed regularized approach improves the tomo-
graphic reconstruction of heavily-downsampled RB-STEM
measurements over the current state-of-the-art technique.
This development opens new perspectives in the search
for methods permitting lower-dose 3D STEM imaging of
electron-sensitive samples without degrading the quality of
the reconstructed volume Additional results on the proposed
framework, e.g. an incoherence analysis of the RB-STEM
acquisition scheme when the image is expressed in terms of
wavelets, are the topic of a manuscript currently under review.

Thttp://bigwww.epfl.ch/algorithm/
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