GENERAL SURFACE ENERGY FOR SPINAL CORD AND AORTA SEGMENTATION
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ABSTRACT

We present a new surface energy potential for the segmen-
tation of cylindrical objects in 3D medical imaging using
parametric spline active contours (a.k.a. spline-snakes). Our
energy formulation is based on an optimal steerable surface
detector. Thus, we combine the concept of steerability with
spline-snakes that have open topology for semi-automatic
segmentation. We show that the proposed energy yields seg-
mentation results that are more robust to noise compared to
classical gradient-based surface energies. We finally validate
our model by segmenting the aorta on a cohort of 14 real
3D MRI images, and also provide an example of spinal cord
segmentation using the same tool.

Index Terms— Snakes, segmentation, steerability, splines,
aorta, spinal cord

1. INTRODUCTION

The development of new 3D techniques for the quantitative
evaluation of physiological and medical structures has be-
come essential to establish medical diagnostic of various dis-
eases and abnormalities. Usually, a proper segmentation of
the object of interest is crucial to obtain accurate measure-
ments. Typically, the segmentation of complex 3D structures
requires a template, which is drawn from an atlas of data that
represents a population of patients or healthy subjects [1].
However, when the structures of interest are simpler and ex-
hibit low variability among individuals, prior knowledge can
be used to design specialized algorithms. Several elements of
interest in the human body, such as vascular structures (e.g.,
the aorta or coronary arteries) and the spinal cord, have cylin-
drical topology; a characteristic that can be exploited to con-
struct efficient segmentation algorithms. Segmenting cylin-
drical structures in medical images is an active field of re-
search. Existing methods mostly rely on meshes, tensors, as
well as tracking and path minimization [2-5]. The common-
ality of these methods is the need for optimizing over a large
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number of parameters, leading to computationally intensive
operations.

In an earlier report [6], we proposed an active contour
model [7-10] as a deformable surface to segment structures
with cylindrical topology. Our parametric spline surface is
defined by a small number of coefficients, which makes it
convenient for the design of snake algorithms. To evolve

the active surface, we initially used an energy term that was
based on the divergence theorem to convert volume integrals
into surface integrals, and was therefore restricted to the case
of closed surfaces. This approach is not suited for open sur-
faces as it leads to approximation errors; for instance, in cases
where the outgoing and incoming flux through the open parts
of our cylinder-like surface do not match.

Fig. 1. Segmentation of the spinal cord (left, green) and of
the thoracic descending aorta (right, yellow) on real MRI data.
The view represents a 3D rendering of the original image. The
blue points on the two colored surfaces are the control points
of the cylinder snake and fully specify the surface according
to (1).



Here, we propose a new general surface energy which can
be safely used to segment open surfaces, such as the ones with
cylindrical topology. It is based on an optimal steerable sur-
face detector [11,12] that identifies the boundary of interest of
the object to segment. The surface detector produces an ori-
ented vector field with high-magnitude values located orthog-
onally to the surface of the object. We construct an energy
which, when minimized, aligns the deformable spline surface
to the vector field. Using spline surfaces brings the advan-
tage that the energy term only needs to be minimized with
respect to a few spline coefficients. Furthermore, the steer-
able surface detector is more robust to noise than the classical
gradient, as observed in synthetic data corrupted by noise. We
then demonstrate the efficiency of our pipeline by segmenting
the aorta on 14 MRI images of healthy subjects.

2. CYLINDER SNAKES REVISITED

In [6], we introduced a deformable parametric surface o :

[0,1] x [0, 1] — R3 with cylindrical topology given by
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where M is the number of control points of the surface o,
y(7) is the popular Keys interpolation kernel [13] given by
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sis function is interpolatory and can reproduce the functions
cos(2mt) and sin(27t) regardless of the number of control
points M. To generate a perfect cylinder, the control points
of the surface ¢ are chosen as

is the Fourier transform of the

by o =

clk,l] = |sin[Z] |. (6)
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Spline-snakes are well-suited for user-interactive segmenta-
tion. The snake surface can be easily adjusted by dragging
control points with the computer mouse.

3. OPTIMAL SURFACE DETECTION

Optimal surface detectors can be tuned to segment objects
of interest, when these objects are described by closed sur-
faces [14]. The detection is based on steerable filters [11,12].
The filters are designed based on optimality criteria includ-
ing high signal-to-noise ratio, low localization error of the de-
tected surface element, and suppression of false oscillations.
A three-dimensional image f filtered with such a surface de-
tector i produces a vector field S. The orientation of S at a
fixed location is computed as

(67(x),07(x)) = argmax(f(x) ~(Rg 9x))  (7)

and its magnitude is obtained by

r*(x) = f(x) *h(Rg+ ¢+X), 8)
where /1(Rg ¢X) is the rotated version of the basis template
h(x) rotated by Euler angle (6,¢). A large magnitude of
the filter response r*(x) at location x signals the presence
of a surface-like feature, and the corresponding Euler angles
(6*(x),0*(x)) give the orientation of the vector that is nor-
mal to the surface element at that location. Given an isotropic
Gaussian kernel g, the surface detector is given by h(x) =
Ag(||x]]) — 5gxx, where gy, is the second order partial deriva-
tive of g(x) and Ag(]|x||) is the (rotation-invariant) 3D Lapla-
cian. From [14], we know that a rotation of the filter / by the
Euler angles (6, ¢) results in h(Rg ¢x) = v7 (A4(x)) v, where
v =(cos 0sin¢,cos 0 cos d,sin¢@) is a unit vector specified by
the Euler angles, H,(x) is the 3D Hessian matrix of g(x), and
Ag(x) = Ag(x)I — SHy(x). Since the convolution is a linear
operation, we have

F(x)*h(Rg ¢X) = V' (Apig(x)) V. )

The optimal filter response is given by the eigenvector v of
A . (x) that corresponds to the maximum eigenvalue such
that A ¢, (X)v* = A,xv*. Thus, the optimal orientation and
corresponding magnitude of the filter response are given by

r* = Amax, (10)
(6*7¢*) = (ev*a(PV*)' (11)

From the properties of steerable filters, any rotated ver-
sion of & can simply be expressed as a linear combination of a
small number of basis filters (9), which significantly relieves
the computational overload of the filtering step.



4. NEW GENERAL SURFACE ENERGY

To attract the snake towards the boundaries of the object of
interest, we use a general surface-based image energy. Upon
minimizing the energy, the snake aligns to the high-magnitude
oriented vector field outputted by the optimal steerable sur-
face detector described in Section 3.

4.1. General Surface Energy

Given a surface snake o, the general surface energy is ex-
pressed as
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The construction of the above energy term can be motivated
as follows.

1. The surface integral enforces that the surface snake
moves towards regions of strong vector field intensity,

the dot product between the vector field and the normal
to the surface aligns the active surface locally to these
regions,

. the high intensity of the vector field produced by the
steerable filter is optimal for the detection of surfaces
in the image and therefore yields results superior to the
ones obtained with gradient-based techniques.

In essence, the proposed energy aligns the snake to the surface
detected by the steerable filter and is reminiscent of the 2D
approach used in [15].

Energy minimization is efficiently achieved by computing
its gradient with respect to {c[k,!]}cz, the control points
defining the snake. It is worth mentioning that our energy is
independent on the topology and is hence applicable to both
open and closed surfaces.
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Table 1. Dice indices for the segmentation of the aorta on real
MRI data.

Image Result Dice Index
1 0.9719
2 0.9895
3 0.9906
4 0.9658
5 0.9813
6 0.9849
7 0.9821
8 0.9751
9 0.9616
10 0.9904
11 0.9860
12 0.9903
13 0.9854
14 0.9824
Mean (std) [ 0.98 (0.02)

5. RESULTS AND VALIDATION

We implemented our general surface energy in combination
with the cylinder snake described in Section 2 and illustrate its
usefulness in segmenting medical structures that have cylin-
drical topology.

5.1. Phantom Data and Robustness to Noise

First, we test our framework on artificial 3D images of cylin-
ders for which the gold standard is known. Images are cor-
rupted with different levels of additive Gaussian white noise.
The cylinder is then segmented using the surface snake op-
timized either on our general surface energy, or on the more
classical gradient-based image energy from [16]. The result-
ing Dice overlap index are reported in Table 2. As a reminder,
the Dice index is defined for two sets A and B as

2|ANB

Dice Index = .
A+ B

15)

The initial position of the snake (before optimization) corre-
sponded to a Dice index of 0.24.

5.2. Real Data

In order to illustrate the efficiency of our method in practice,
we applied our framework on 14 3D MRI scans, each origi-
nating from a different subject. An example of these data is
shown in Figure 1. In each scan, we have segmented the tho-
racic descending aorta using the general surface energy. Re-
sults were then compared to manual segmentations performed
by expert clinicians. Results are reported in Table 1. The
mean Dice index for the snake initializations is 0.31.



Table 2. Comparison of Dice indices when segmenting a
cylinder using our generalsurface energy (“ proposed”) or a
classical gradient-based approach (“V”).

SNR [dB] (stdd) Dice Index (proposed) Dice Index (V)
oo (-) 0.97 0.81
9.91 (10) 0.96 0.73
0.27 (30) 0.96 0.84
-4.17 (50) 0.96 0.84
-7.10 (70) 0.95 0.74
-9.21 (90) 0.94 0.83

6. CONCLUSION

We introduced a new energy term for surface spline-snakes
which is general in the sense that it is applicable to open or
closed surfaces. We provide explicit formulas to integrate this
energy into an semi-automated active contour segmentation
framework relying on cylindrical spline-snakes. We show that
our energy term is more robust to noise than the ones that are
typically used to detect surfaces and which rely on the classi-
cal gradient. To illustrate the usefulness of our approach, we
tested and validated it on real data. For the interested reader,
we provide demonstration videos at
http://bigwww.epfl.ch/demo/generalizedsurfaceenergy/.
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