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Abstract

Cortical thickness estimation performed in vivo via magnetic resonance imaging (MRI) is an 

important technique for the diagnosis and understanding of the progression of Alzheimer’s disease 

(AD). Directly using raw cortical thickness measures as features with Support Vector Machine 

(SVM) for clinical group classification only yields modest results since brain areas are not equally 

atrophied during AD progression. Therefore, feature reduction is generally required to retain only 

the most relevant features for the final classification. In this paper, a spherical sparse coding and 

dictionary learning method is proposed and it achieves relatively high classification results on 

publicly available data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2 dataset (N 
= 201) which contains structural MRI data of four clinical groups: cognitive unimpaired (CU), 

early mild cognitive impairment (EMCI), later MCI (LMCI) and AD. The proposed framework 

takes the estimated cortical thickness and the spherical parameterization computed by FreeSurfer 

as inputs and constructs weighted patches in the spherical parameter domain of the cortical 

surface. Then sparse coding is applied to the resulting surface patch features, followed by max-

pooling to extract the final feature sets. Finally, SVM is employed for binary group classifications. 

The results show the superiority of the proposed method over other cortical morphometry systems 

and offer a different way to study the early identification and prevention of AD.
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1. INTRODUCTION

Cortical thickness estimation in magnetic resonance imaging (MRI) is an important 

technique for Alzheimer’s disease (AD) research. It helps precisely measure the whole-brain 

and temporal lobe volume atrophy, which has been proven to correlate closely with changes 

in cognitive performance and is therefore a valid imaging biomarker of AD progression [1]. 

A number of research has been focused on accurate estimation of cortical thickness (as 

reviewed in [2]). Currently, two different computational paradigms exist, with methods 

generally classified as either surface-based [3] or voxel-based [4]. A surface-based thickness 

computation example is shown in Fig. 1. Between them, surface-based cortical thickness is 

more widely used in AD research.

There has been a growing interest to apply computer-aided diagnostic classification 

techniques to analyze cortical thickness features and diagnose different stages of AD and 

especially in preclinical individuals at high risk for AD to facilitate early interventions. 

Lerch et al. [5] investigated the potential of fully automated measurements of cortical 

thickness to reproduce the clinical diagnosis in 19 AD and 17 cognitive unimpaired (CU) 

subjects. The results show regionally variant patterns of discrimination ability, with over 

90% accuracy, but the subject amounts are relative small. Cuingnet et al. [6] constructed a 

classifier at each vertex by using the cortical thickness as a feature vector. Although the 

vertex-wise data can reflect local deformity of a small region, they are sensitive to noise and 

registration errors. Cho et al. [7] overcame the difficulties associated with both types of 

features by adopting the noise-filtered vertex-wise cortical thickness data based on spatial 

frequency analysis. This improvement led to an improved accuracy in AD classification. In 

[8], longitudinal cortical thickness changes were measured by 4D (spatial plus temporal) 

thickness measuring algorithm. Their proposed method can distinguish AD patients from 

CU at an accuracy of 96.1%. Nevertheless, having a different systematic approach, which 

focuses on cortical thickness and validated for different group classifications, including early 

MCI (EMCI) and later MCI (LMCI), to aid in the diagnosis and understanding of AD 

progression would be highly advantageous to the preclinical AD research.

Based on the cortical thickness features computed by FreeSurfer, this paper proposes a novel 

machine learning framework for the diagnosis of different stages of AD. The main 

contributions of this work are as follows. First, to the best of our knowledge, it is the first 

sparse coding work formulated on the sphere domain although sparse coding has achieved 

great success on standard Euclidean image domains [9] and recently in the hyperbolic 

domain [10]. With an efficient Stochastic Coordinate Coding (SCC) [11][12][13], our work 

generalizes sparse coding algorithms to the sphere domain and enriches our understanding 

of sparse coding. Since cortical thickness estimation algorithm generates high dimensional 

features, some feature reduction algorithms are usually applied before classification. Our 

second contribution is to adopt novel feature reduction scheme, such as sparse coding and 

max-pooling [14], which improves the efficiency and efficacy of the performance using 

high-dimensional cortical thickness on a variety of AD diagnosis tasks. In our work, with the 

Support Vector Machine (SVM) classifier [15], our system achieved an average of 91.5% on 

six different classification tasks in our relatively large-sized ADNI2 baseline dataset (N = 

201).
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2. METHODS

2.1. System Pipeline

Fig. 2 summarizes the overall pipeline of our new system. FreeSurfer [16] is used to segment 

images (Fig. 2(a)) and build white matter (WM) and pial cortical surfaces (Fig. 2(b)). 

FreeSurfer computes the cortical thickness by deforming the WM surface to pial surface and 

then measuring the deformation distance as the cortical thickness (Fig. 1). FreeSurfer also 

produces a spherical parameterization for each pial surface (Fig. 2(c)). The spherical 

parameter surface and weighted spherical harmonics [17] are used to register pial surfaces 

across subjects (Fig. 2(d)). In our approach, the spherical parameter surface is the canonical 

space from which patches are selected. Fig. 2(e) shows some non-overlapping patches found 

on both the spherical surface and the cortical surface. After we compute these patches, 

sparse coding combined with max-pooling [14] are applied for cortical thickness feature 

dimension reduction. Max-pooling is an aggregate statistics dimensional reduction 

technique. It computes the max value of a particular feature over a region of the image. 

These summary statistics are much lower in dimension than the original data. Finally, SVM 

classifier is used for classification of different AD clinical groups.

2.2. Weighted Spherical Harmonics for Patch Selection

To build spherical patches on the parameter domain, we need regular underlying grids. 

However, the spherical parameterization results computed by FreeSurfer do not have regular 

structures. To overcome this problem, we adopted the weighted spherical harmonic 

representation (WSHR) [17] to generate the regular grids using the spherical 

parameterization computed by FreeSurfer. Additionally, the WSHR fixes the Gibbs 

phenomenon (ringing effects) associated with the traditional Fourier descriptors and 

spherical harmonic representation by weighting the series expansion with exponential 

weights. The exponential weights make the representation converges faster and reduces the 

amount of wiggling. It helps create consistent patches across subjects.

Within the unit sphere parameter space, the mesh parameter coordinates can be represented 

by the Euler angles θ ∈ [0, π] and φ ∈ [0, 2π) as p(θ, φ) = (p1(θ, φ); p2(θ, φ); p3(θ, φ))′. 
The weighted spherical harmonic representation of coordinates is then given by

where , and sij represents spherical harmonics of 

degree i and order j. Fig. 2(d) shows an example of the WSHR of 40th degree and set 

bandwidth μ of zero.

After the cortical hemispheres have been registered with WSHR, consistent patches are 

defined from the spherical parameter space. As shown in Fig 2e, the spherical coordinate can 

be projected back to the cortical surface coordinate, which preserves the correspondences 

between the patches and cortical structures in 3(b). Within the canonical sphere space, it is 
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straightforward to create consistent patches across subjects on spherical coordinates space. 

The patches are square-shaped on parameter space but distorted on the original surface. 

They smaller and more distorted at the sphere pole areas. Specifically, a number of 10 × 10 

windows (defined by (θ, ϕ)) are created on the sphere to obtain a collection of small image 

patches based on the spherical geometry structure, shown in Fig. 3(c). The zoomed-in 

picture shows some overlapping areas between image patches. The procedure is equivalent 

to applying a high-pass filter to the original mesh. As a result, the geometric structures are 

still preserved in the centered mesh, but some low frequencies have disappeared.

2.3. Sparse Coding and Dictionary Learning

Sparse coding and dictionary learning has been successful in many image processing tasks 

as it can concisely model natural image patches. In this work, Stochastic Coordinate Coding 

(SCC) [11] was adopted to construct the dictionary because of its computation efficiency.

Given a finite training set of signals, in this case thickness features, X = (x1, x2, ··· , xn) in 

Rp×n image patches. Each image patch xi ∈ Rp, i = 1, 2, · , n, where p is the dimension of 

image patch and n the number of image patches, the idea of sparse patch features can be 

incorporated into the following optimization problem:

(1)

where λ is the regularization parameter, || · || is the standard Euclidean norm and ||zi||1 is the 

summation of all the absolute value of elements from zi. xi can be represented by xi ≈ Dzi. 

In this way, the p-dimensional vector xi is represented by an m-dimensional vector zi, which 

means the learned feature vector zi is a sparse vector of dimension m. In other words, m is 

the number of sparse codes. The first term of Eq. 1 measures the degree of goodness 

representing the image patches. The second term ensures the sparsity of the learned feature 

zi. D = (d1, d2, ··· , dm) ∈ Rp×m is the dictionary. To prevent an arbitrary scaling of sparse 

codes, the columns dj are constrained by

Algorithm 1

Stochastic Coordinate Coding (SCC) Algorithm

Input: Initial dictionary D and image patches {x1, ··· , xn}.

Output: The learned dictionary and coefficients D, Z where Z = {z1, ··· , zn}.

1: for t = 1 to T do

2:  for i = 1 to n do

3:   Get an image patch xi

4:   Calculate the sparse code zi by using several steps of coordinate descent (CD) [11]. zi,t+1 = CD(Dt, zi,t, xi)
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5:   Update the dictionary D by performing on step stochastic gradient descent (SGD) [11]. Dt+1 = SGD(Dt, zi,t+1)

6:  end for

7: end for

Thus, the problem of dictionary learning can be rewritten as a matrix factorization problem 

as follows:

(2)

where  is the Frobenius norm. The matrix factorization is a convex problem when either 

D or Z is fixed. With the initial dictionary D by selected patches, we summarize the SCC 

algorithm in Algorithm 1. We call each cycle, i.e. each image patch has been trained once, as 

an epoch. Usually, several epochs are required to obtain a satisfactory result. T is the 

designed epoch number and t ∈ {1, ..., T}. zi,t and Dt denotes the value of zi and D in the tth 

epoch. Specifically, we use 7 epochs to learn the dictionary in this work. We set all the 

sparse codes to be zero at the beginning.

3. EXPERIMENTAL RESULTS

3.1. Datesets and Experiment Setting

In our experiments, the new approach is applied to Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) 2 database [18]. We used the full set of ADNI2 baseline dataset (202 

subjects, 1 failed with FreeSurfer 5.3.0), which consists of: 40 patients of AD, 37 patients of 

LMCI, 73 patients of EMCI and 51 subjects of CU. All subjects underwent thorough clinical 

and cognitive assessment at the time of acquisition, the statistics with gender, age and the 

MiniMental State Examination (MMSE) score shown in Table. 1.

3.2. Classification Results

After we applied SCC to learn the sparse features, max-pooling [14] and SVM [15] were 

applied for additional dimension reduction and classification. We evaluated our proposed 

method on six classification experiments, including (1) AD vs. CU, (2) AD vs. LMCI, (3) 

AD vs. EMCI, (4) LMCI vs. CU, (5) EMCI vs. CU and (6) LMCI vs. EMCI. We randomly 

split the data into training and testing sets using a ratio 6:4 and a 5-fold leave-one-out cross 

validation protocol was adopted to estimate the classification accuracy. We rotated this 

procedure for 20 times to estimate the accuracy. In each set of experiment, we compared 

cortical thickness on left, right hemisphere and both hemispheres (whole brain), respectively. 

For the comparison purpose, the raw cortical thickness data from FreeSurfer, whole brain 

volume and area calculated by FreeSurfer were also used as features with SVM as the 

classifier on the same set of classification tasks.

Three performance measures: Accuracy (ACC), Sensitivity (SEN) and Specificity (SPE) 

were computed as evaluation [19]. Besides them, we also computed the area-under-the-curve 

(AUC) of the receiver operating characteristic (ROC) [19]. Table 2 shows classification 
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performance on six different experiments. In our experimental results (Table 2), we can 

observe that the proposed method always achieved the best results in all six different 

classification tasks. Specifically, in AD vs. CU, AD vs. LMCI, AD vs. EMCI, LMCI vs. CU, 

EMCI vs. CU and EMCI vs. LMCI, the best accuracy rates (0.958, 0.933, 0.931, 0.940, 

0.884, 0.843) were achieved by our new proposed method using the whole cortical thickness 

features. And among all six experiments, the new method with whole cortical thickness at 

least achieved three best measures among all comparisons. And the left thickness feature 

performs better than right one and always achieved highest sensitivity. Comparing with the 

Freesurfer thickness results, we observe our method selected useful features which can 

improve the classification accuracy.

To further compare performance, we also plot ROC curves with computed AUC measures, 

which are shown in Figure 3. We can find that our new approach always achieved the best 

AUC among six different testing datasets. For AD vs. CU, AD vs. LMCI, AD vs. EMCI, 

LMCI vs. CU, EMCI vs. CU and LMCI vs. EMCI, the proposed method achieved the best 

AUC 0.963, 0.899, 0.923, 0.948, 0.866 and 0.791, respectively. These results show that our 

new method achieve higher AUC. It means the probability that the classifier will rank a 

randomly chosen positive example is higher than a randomly chosen negative example and 

indicates that we may have learned a good classifier.

4. CONCLUSIONS

In this paper, we presented a spherical sparse coding framework, applied it to study cortical 

thickness feature reduction problem, and evaluated our method on the ADNI2 dataset to 

check its classification performance. The empirical results, in a total of six comparisons, 

demonstrated that the spherical sparse coding method achieved greater statistical power than 

some other standard features.
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Fig. 1. 
Three sectional views of pial (yellow) and WM surfaces (red) reconstructed by FreeSurfer. 

The cortical thickness is estimated by the deformation between them.
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Fig. 2. 
Cortical thickness estimation pipeline and spherical patch visualization.
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Fig. 3. 
Visualization of computed image patches on spherical geometry structure.
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Fig. 4. 
Classification performance comparison with receiver operating characteristic (ROC) curves 

and area under curve (AUC) measures. Each figure shows results from Whole cortical 

thickness, left cortical thickness, right cortical thickness, cortical volume and area statistic, 

respectively.
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Table 1

Demographic information of studied subjects in ADNI2 baseline dataset.

Group Num F/M Age MMSE

AD 40 15/25 75.67±8.87 24.41±4.29

LMCI 37 14/13 73.35±5.91 25.79±2.67

EMCI 73 27/46 72.84±8.14 27.78±2.25

CTL 51 28/23 72.42±6.12 28.64±1.38
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