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ABSTRACT

This paper proposes a multi-shell sampling scheme and corre-
sponding transforms for the accurate reconstruction of the dif-
fusion signal in diffusion MRI by expansion in the spherical
polar Fourier (SPF) basis. The sampling scheme uses an opti-
mal number of samples, equal to the degrees of freedom of the
band-limited diffusion signal in the SPF domain, and allows
for computationally efficient reconstruction. We use synthetic
data sets to demonstrate that the proposed scheme allows for
greater reconstruction accuracy of the diffusion signal than
the multi-shell sampling scheme obtained using the gener-
alised electrostatic energy minimisation (gEEM) method used
in the Human Connectome Project. We also demonstrate that
the proposed sampling scheme allows for increased angular
discrimination and improved rotational invariance of recon-
struction accuracy than the gEEM scheme.

Index Terms— sampling scheme, diffusion MRI, multi-
shell acquisition, SPF

1. INTRODUCTION

In diffusion MRI, the intra-voxel diffusion of water molecules
is used to determine the structure and connectivity of white
matter in the brain. The diffusion signal can be reconstructed
from a finite number of measurements in q-space, where q is
the diffusion wave vector. Diffusion signal measurements are
normally collected on a single sphere, if only angular infor-
mation is required, or multiple concentric spheres in q-space,
known as q-shells, if both angular and radial information is re-
quired [1]. The diffusion signal can then be reconstructed by
expansion in an orthonormal basis, such as the spherical polar
Fourier (SPF) basis [1]. Diffusion characteristics, such as the
ensemble average propagator (EAP) and its features, such as
the orientation distribution function (ODF), can be obtained
analytically using the SPF coefficients [1, 2].

The number of diffusion signal measurements that can be
acquired must be small due to the need for scan times to be
practical in a clinical setting. In addition, for accurate and fast
reconstruction of the diffusion signal and subsequent com-
putation of the diffusion characteristics, the SPF coefficients
must be computed accurately and efficiently. The minimum

number of samples required by any sampling scheme to al-
low accurate reconstruction of the diffusion signal by expan-
sion in the SPF basis is equal to the degrees of freedom of the
signal in the SPF basis, hence we referred to this as the op-
timal number of samples [3, 4]. Furthermore, as within each
voxel white-matter fibre populations may assume any orien-
tation, the diffusion signal reconstruction accuracy should not
change significantly if the diffusion signal, or equivalently the
sampling scheme, is rotated [5, 6].

Several multi-shell sampling schemes are proposed in the
literature, the majority of these focus on uniform sampling of
the sphere to achieve rotationally invariant reconstruction ac-
curacy and aim to maximise the angular distribution of sam-
ples within and between shells to achieve increased angu-
lar discrimination [5-7]. Most of these schemes distributed
the shell radii uniformly [5-7]. Existing multi-shell sampling
schemes use least-squares to calculate the diffusion signal co-
efficients, which is computationally intensive [5-8].

Electrostatic energy minimisation and spherical code are
two methods for obtaining a uniform arrangement of samples,
these methods have been generalised to multi-shell sampling
schemes in [5] and [6] respectively. [5, 6] use a cost function
that is a trade-off of sample location uniformity within a shell
compared with the uniformity of all samples projected onto
one sphere to obtain uniformity within and between shells.
The electrostatic energy minimisation scheme [5] can be used
to design incremental acquisition schemes.

The multi-shell sampling scheme proposed in [7] uses
the concept of uniform and dual polyhedra with alternating
shells having complementary sets of directions. However, this
scheme only provides two separate sets of directions, which
only allows different directions on each shell for sampling
schemes with two shells. Also, due to the limited number of
uniform polyhedra, this scheme cannot be used to construct
sampling grids of arbitrary size. In [8] icosahedral sampling
schemes with arbitrary number of samples are developed; this
work has not been generalised to multi-shell sampling.

A sampling scheme that increases reconstruction accuracy
by minimising the condition number of the least-squares ma-
trix was developed in [9]. This scheme does not have exact
quadrature as the number of samples per shell is proportional
to the Gauss-Laguerre weights which are not integers. The
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scheme also has more than the optimal number of samples.
We here develop a sampling scheme and corresponding

transform for reconstructing the diffusion signal in the SPF
basis. The proposed multi-shell framework attains an opti-
mal number of samples, equal to the degrees of freedom of
the diffusion signal band-limited in the SPF basis, and has an
efficient transform for calculating the coefficients in the SPF
basis. We demonstrate that the proposed sampling scheme
allows for accurate and effectively rotationally invariant re-
construction of the diffusion signal, as well as allowing for
greater angular discrimination compared with the generalised
electrostatic energy minimisation sampling scheme [5].

2. MATERIALS AND METHODS

2.1. SPF Basis

The diffusion signal, specifically the normalised MR signal
attenuation, E(q) can be expanded in the SPF basis [1] as

E(q) =

N−1∑
n=0

L−1∑
`=0

∑̀
m=−`

(E)n`mRn(q)Y m
` (q̂), (1)

where q̂ = q
|q| , q = |q|, Y m

` (q̂) is the spherical harmonic
coefficient of degree ` and order m, and the expansion coeffi-
cients are given by

(E)n`m = 〈E(q), Rn(q)Y m
` (q̂)〉. (2)

The radial functions Rn are Gaussian-Laguerre polynomials.

Rn(q) =

[
2

ζ1.5
n!

Γ(n+ 1.5)

]0.5
exp

(
−q2

2ζ

)
L1/2
n

(
q2

ζ

)
,

(3)
where ζ denotes the scale factor and L1/2

n are the n-th gener-
alised Laguerre polynomials of order half. The expansion in
(1) assumes that E(q) is band-limited at radial order N and
angular order L.

2.2. Proposed Sampling Scheme and Transform

Due to the separability of the SPF basis, the 3D transform for
calculating the diffusion signal coefficients (2) can be sepa-
rated into transforms in the radial and angular directions.

For the radial transformation, Gauss-Laguerre quadrature
can be used, where N sampling nodes is sufficient for exact
quadrature. The N shells of the proposed multi-shell sam-
pling scheme are placed at qi =

√
ζxi where xi are the roots

of the N -th generalised Laguerre polynomial of order a half.
We determine the corresponding weights to be

wi =
0.5ζ1.5Γ(N + 1.5)xie

xi

N !(N + 1)2[L0.5
N+1(xi)]2

. (4)

It was found in [1] thatN = 4 shells are sufficient for con-
vergence to the ground truth when the signal was Gaussian or

(a) (b)

Fig. 1: Proposed sampling scheme (a) North pole view and
(b) South pole view.

bi-Gaussian. We set the scaling factor ζ so that shells are lo-
cated at b-values within an interval of interest. In this work,
we use a maximum b-value of 8000 s/mm

2, as in [10], result-
ing in shells at b = 411.3, 1694.4, 4036.3 and 8000 s/mm

2.
For sampling within each shell, we use the recently pro-

posed single-shell sampling scheme [3, 4] which allows accu-
rate reconstruction, with the reconstruction error on the order
of machine precision for signals band-limited in the spherical
harmonic basis, has an efficient forward and inverse spherical
harmonic transforms (SHT), and uses an optimal number of
samples for the band-limited diffusion signal on the sphere,
equal to L(L+ 1)/2.

The spherical harmonic band-limit, and therefore the
number of samples in each shell, is determined using [10],
where the authors determined the spherical harmonic band-
limit L required to accurately reconstruct the Gaussian diffu-
sion signal at different b-values, the shells have L = 3, 5, 9
and 11 for the inner most (smaller b-value) to outer most shell
respectively. The proposed sampling scheme therefore has a
total of 132 samples.

Fig. 1 shows the proposed sampling scheme projected
onto a single sphere, samples on the inner most to outer most
shell are shown in black, green, red and blue for each shell
respectively. Locations where antipodal symmetry is used to
infer the value of the signal are lighter in color.

2.2.1. Computational Complexity

The proposed transform for computing the SPF coefficients is
composed of N SHTs, where N is the number of shells. Us-
ing the SHT proposed in [4], for the case of all shells having
the same spherical harmonic band-limit L, the proposed sam-
pling scheme has computational complexity O(NL4) which
is significantly faster than least-squares method of computa-
tion which has computational complexity O(NL6). As the
inner shells have smaller band-limits than the outer shells, the
computational complexity is actually smaller than O(NL4).



3. RESULTS

In order to evaluate the multi-shell sampling grid and corre-
sponding transform presented in Section 2, we compare with
the generalised electrostatic energy minimisation (gEEM)
method 1 [5] used in the Human Connectome Project which
has shells evenly distributed radially, we set qmax and qmin

and the number of samples per shell to be the same as
the proposed scheme. The non-incremental version of the
gEEM scheme is used for fair comparison. When the gEEM
sampling scheme is used with the optimal number of sam-
ples, regularisation of the least-squares matrix is required
as the matrix is ill-conditioned; we use λl = 10−7 and
λn = 5 × 10−8 for the angular and radial regularisation
respectively as in [2].

3.1. Reconstruction Accuracy

We evaluate the reconstructed accuracy of the proposed
scheme using three different Gaussian models of the dif-
fusion signal: one fibre (Gaussian diffusion), and two fibres
(mixture of Gaussians) with a 90◦ and 45◦ crossing angle.
The Gaussian models have diffusivities of λ1 = 1.7 mm2/s
and λ2 = λ3 = 0.2 mm2/s. For each model of the diffusion
signal, synthetic data sets are generated using the proposed
sampling scheme presented in Section 2. The coefficients of
the diffusion signal in the SPF basis (E)n`m are then calcu-
lated using the proposed transform and finally the diffusion
signal is reconstructed using (1).

The reconstruction error between the reconstructed sig-
nal ER(q) and the ground truth obtained from each model
EM (q) is evaluated on a Cartesian sampling grid (samples
uniformly distributed in q-space) with 10000 samples and the
mean error, Emean ,

∑10000
i=1 (|EM (qi) − ER(qi)|)/10000

is calculated. Fig. 2 shows log10(Emean) for all three diffu-
sion signal models. It is evident that the proposed scheme
has a smaller reconstruction error for all three models than
the gEEM sampling scheme. It was found that proposed sam-
pling scheme had a smaller reconstruction error throughout
q-space, particularly at large q-space radii. Due to space con-
straints, these results are not shown here.

3.2. Rotational Invariance of Reconstruction Accuracy

We analyse how the reconstruction accuracy depends on fi-
bre orientation by calculating Emean for 30 randomly gen-
erated rotations of the diffusion signal model with one fibre
(Gaussian diffusion). The log of the mean reconstruction er-
ror log10(Emean) is shown in Fig. 3. The proposed sampling
scheme shows smaller variation in reconstruction error com-
pared with the gEEM scheme.

1Available at https://github.com/ecaruyer/qspace
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Fig. 2: Log of the mean reconstruction error log10(Emean) for
the gEEM and the proposed sample scheme for three different
Gaussian models of the diffusion signal.

proposed gEEM

sampling scheme

-2

-1.5

-1

-0.5
lo

g
10

(E
m

ea
n
)

Fig. 3: Log of the mean reconstruction error log10(Emean)
for different rotations of the single fibre (Gaussian) model of
the diffusion signal for the gEEM scheme and the proposed
sample scheme.

3.3. Angular Discrimination

In order to evaluate the proposed sampling scheme in terms of
angular discrimination, we use the analytical expression in [2]
to obtaining the ODF from the SPF coefficients. We find fi-
bre directions by a discrete search for the maxima of the ODF
over 2562 vertices on the sphere. Fig. 4 shows the mean an-
gular error for the proposed and gEEM sampling scheme for
two fibres (mixture of Gaussians) at crossing angles between
30◦ to 90◦. For all crossing angles the proposed scheme has
a smaller angular error. The gEEM sampling scheme is un-
able to resolve two fibres for the 30◦ crossing angle, also for
some crossing angles more than two fibre populations were
incorrectly detected.
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Fig. 4: Angular error for fibre crossing angles between 30◦

and 90◦ for the gEEM and the proposed sample scheme.

4. DISCUSSION AND CONCLUSIONS

We have proposed a novel multi-shell sampling scheme for
the measurement and reconstruction of the diffusion signal.
The scheme has an optimal number of samples equal to the
degrees of freedom of the band-limited diffusion signal in the
SPF basis and is computationally efficient. We evaluated the
proposed scheme using synthetic data sets by comparing its
performance with that of the gEEM scheme used in the Hu-
man Connectome Project. The least-squares method of recon-
struction used by the gEEM method is ill-conditioned with an
optimal number of samples. While regularisation improves
this, the proposed transform still results in greater reconstruc-
tion accuracy, leading to more rotationally invariant recon-
struction accuracy and improved angular discrimination.

As future work, we intend to apply our sampling scheme
to more complicated models of diffusion and consider the
effect of noise on reconstruction accuracy, before using our
scheme for real image acquisitions.
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