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ABSTRACT

Spectral Doppler ultrasound imaging allows quantification of blood
flow by estimating the velocity distribution of the blood within a
range gate on a single image line. In applications, it is desirable
to have both brightness mode (B-mode) at high frame rate, to al-
low the medical doctor to visualize and follow vessel movement, as
well as Doppler mode with high spectral resolution of the velocity
distribution, so that changes in blood flow can be tracked. In this
paper, we propose a slow-time sparse emission pattern of the blood
Doppler signal which significantly reduces the number of transmis-
sions sent. For the proposed sampling scheme, we derive the min-
imal number of Doppler emissions allowing reconstruction of the
signal’s power spectrum and provide power spectrum recovery tech-
niques that achieve this minimal rate. Using realistic Field II simu-
lations, we show that accurate estimation of blood velocity spectrum
can be performed from only 12% of the transmissions required in
conventional scanning. Thus, several vessel regions may be investi-
gated while keeping a high frame rate of the B-mode images.

Index Terms— Ultrasound, Spectral Estimation, Nested Ar-
rays, Blood Velocity Estimation , Blood Doppler.

1. INTRODUCTION
Spectral Doppler is a non-invasive technique commonly used in
medical ultrasound. It enables quantitative estimation of local blood
velocities in a chosen spatial region within a specific blood vessel.
The data for velocity estimation is acquired by transmitting a train
of narrowband ultrasound pulses along a desired direction at a con-
stant pulse repetition frequency (PRF). The backscattered signals
from each pulse emission are then sampled and focused along the
chosen direction using dynamic focusing. Assembling the samples
associated with a specific depth of interest from all emissions forms
the so-called slow-time signal with a frequency proportional to the
blood velocity along the direction of the ultrasound beam. The blood
velocity distribution is then estimated by reconstructing the power
spectral density (PSD) of the slow-time signal. The time needed for
each velocity estimation is the coherent processing interval (CPI),
which is equal to the number of transmitted pulses P divided by the
PRF. Displaying spectral analysis results over time, referred to as a
spectogram, visualizes changes in the blood velocity distribution.

In conventional commercial ultrasound systems, the spectogram
is estimated using Welch’s method [1], a modified averaged peri-
odogram based on the fast Fourier transform (FFT) algorithm. How-
ever, this approach suffers from high leakage and requires a long
observation window (OW), meaning that a large number of trans-
missions in the same direction has to be used in order to attain suf-
ficient spectral resolution. As the number of transmitted pulses per
unit of time is limited by the speed of sound and the desired depth
being examined, there is an inherent trade off between spectral and
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temporal resolution. Furthermore, it is also important to update the
B-mode image frequently to allow the medical doctor to examine
the surrounding tissue of the vessel and navigate to choose the re-
gion in which the blood velocity is estimated. Conventionally, an
interleaved B-mode/Doppler sequence is used where every second
transmission is a B-mode acquisition, thereby halving the PRF. This
results in reduction of the maximal velocity that can be measured by
a factor of two, according to the Nyquist theorem. An alternative ap-
proach is to use a block of B-mode transmissions, but this results in
holes in the blood velocity spectogram. These limitations raise the
need for an improved technique for accurate estimation of the blood
PSD using considerably fewer Doppler transmissions. Since every
sample in the slow-time signal is related to a certain pulse emission,
we refer to the Doppler transmissions as slow-time samples.

In order to overcome these shortcomings, the authors in [2, 3, 4]
proposed several approaches using deterministic and random sam-
pling schemes. These include two iterative techniques, BIAA and
BSLIM, which experimentally enable estimating the PSD using 30%
of the transmissions usually used. In [5, 6] two approaches based on
compressed sensing (CS) [7] were presented. However, all these pre-
vious methods are difficult for real-time implementation, due to their
iterative nature. In addition, no analysis was performed on the mini-
mal number of slow-time samples ensuring adequate reconstruction
of the spectrum, using these techniques.

In this paper, we adopt recent work from the fields of MIMO
radar and DOA estimation [8, 9] and propose an irregular sparse
transmission scheme for blood spectral Doppler which we refer to
as nested slow-time sampling. An analysis of the proposed approach
is performed, showing that the minimal number of Doppler transmis-
sions allowing spectrum reconstruction is proportional to the square
root of P . We then present a computationally efficient estimator
which exploits nested slow-time sampling and is shown, using real-
istic Field II simulation data [10], to outperform BIAA and BSLIM
[2] by producing accurate estimation of the blood velocity from only
12% of the OW with size P = 256. This allows for updating the
B-mode image at high rate and/or estimating the PSD of the blood at
several regions of interest simultaneously while maintaining spectral
and temporal resolution.

This paper is organized as follows. In Section 2, we present
the blood scattering model and formulate our problem. Section 3
describes the nested slow-time sampling scheme and the proposed
algorithm for spectrum reconstruction. In Section 4, we derive the
minimal number of Doppler transmissions required by the nested
approach. Numerical experiments are presented in Section 5.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In spectral Doppler the ultrasound scanner transmits a pulse train

sT (t) =

P−1∑
p=0

sin (2πfc (t− pT )) , 0 ≤ t ≤ PT, (1)
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consisting of P equally spaced pulses sin(2πfct) where fc is the
center frequency of the signal. The pulse repetition interval is T , and
its reciprocal fprf = 1/T is the pulse repetition frequency (PRF).

Consider a single blood scatterer. The noise-free received signal
can be modeled as

s(t) =

P−1∑
p=0

α sin

(
2πfc

(
t− pT − 2dp

c

))
, (2)

where p is the emission number (slow-time sample index), c is the
sound wave propagation speed, α is the amplitude related to the
blood scatterer reflectivity and dp is its depth. It will be convenient
to express s(t) as a sum of single frames s(t) =

∑P−1
p=0 sp(t), where

sp(t) = α sin

(
2πfc

(
t− pT − 2dp

c

))
. (3)

The blood scatterer movement along the beam direction during P
consecutive transmissions is given by

dp = d0 + vpT , 0 ≤ p ≤ P − 1, (4)

where d0 is the initial depth of the blood scatterer and v is its axial
velocity. Substituting (4) into (3), we get

sp(t) = α sin

(
2πfc

(
t− pT − 2d0

c
− 2v

c
pT

))
. (5)

We wish to recover the blood scatterer unknown axial velocity
v and the variance of its amplitude α from the received signal s(t).
We begin by deriving an expression for the samples of s(t) and show
how v and α are embodied in them. To this end, each aligned frame
sp(t+ pT ) is sampled yielding the discrete signal

sp[k] = sp

(
k

fs
+ pT

)
= α sin

(
2πfc

(
k

fs
− 2d0

c
− 2v

c
pT

))
,

(6)
where fs is the sampling frequency and k is the sample index asso-
ciated with depth (fast-time sample index). For mathematical conve-
nience, we rewrite the signal as a 2D function

s[k, p] = α sin

(
2πfc

(
k

fs
− 2d0

c
− 2v

c
pT

))
. (7)

The analytical signal is then

x[k, p] = α exp

(
2πjfc

(
k

fs
− 2d0

c
− 2v

c
pT

))
. (8)

Since fc/fs is known, we demodulate x [k, p] resulting in

y [k, p] = α exp

(
−2πjfc

(
2d0
c

+
2v

c
pT

))
. (9)

Denoting the Doppler frequency by ψ , − 2v
c
fcT , we have

y [k, p] = α̃ exp (2πjψp) , (10)

where we define α̃ = α exp
{
−j 4πfcd0

c

}
to simplify notations.

In the general case, each resolution cell of the ultrasound system
contains a distribution of scatterers. Consequently, the measured sig-
nal consists of M unknown frequencies {ψm}Mm=1, each with cor-
responded velocity vm. Taking the latter into account in addition to
noise, we rewrite (10) as

y [k, p] =

M∑
m=1

αme
2πjψmp + w [k, p] , (11)

where αm is a complex amplitude related to the number of scatter-
ers with axial velocity vm and w[k, p] is zero mean white complex
Gaussian noise with unknown variance σ2 assumed to be uncorre-
lated with the amplitudes. The Doppler frequencies {ψm}Mm=1 are
assumed to lie in the unambiguous frequency domain, that is |ψm| ≤
1/2, for all 1 ≤ m ≤ M . We also assume that the amplitudes are
statistically uncorrelated with unknown variances σ2

m = E[|αm|2].
Assembling the slow-time samples y [k, p] for P consecutive trans-
missions into a vector we obtain

y [k] = Aα + w[k], (12)

where y [k] = [y [k, 0] ...y [k, P − 1]]T ∈ CP×1 is the slow-time
vector and w[k] is the noise vector defined accordingly. The vector
α ∈ CM×1 consists of M amplitudes {αm}Mm=1 and A ∈ CP×M

is a Vandermonde matrix, whose pmth entry is given by [A]pm =

exp(2πjψmp). Our goal is to estimate from (12) the frequencies
{ψm}Mm=1 and the variances {σ2

m}Mm=1.
Define the autocorrelation matrices Rα = E

[
ααH

]
∈ RM×M

and Ry = E
[
y[k]y[k]H

]
∈ RP×P . Then from (12), we have

Ry = ARαA
H + σ2I, (13)

where (·)H denotes the Hermitian conjugate. Since we assume the
amplitudes are statistically uncorrelated, the matrix Rα is a diago-
nal matrix with Rα(m,m) = σ2

m. Denoting by p ∈ RM×1 the
diagonal of Rα, it follows that

z = vec(Ry) = (A∗ �A)p + σ2vec(I), (14)

where (·)∗ denotes the conjugate and� the Khatri-Rao product. We
wish to recover the power spectrum vector p from (14). Note, how-
ever, that A is unknown.

In standard processing [1], the Doppler frequencies are assumed
to lie on the Nyquist grid so that ψm = 2πim/PT , where im is
an integer in the range [0, P − 1]. This implies that (14) can be
rewritten with A = FH ∈ CP×P being scaled inverse fast Fourier
transform (IFFT) matrix and p ∈ RP×1 a vector that contains the
value σ2

m at index im. In this case, the spectral resolution is equal to
2π/PT , where P is chosen large enough to attain sufficient resolu-
tion. Assuming we have enough snapshots of the slow-time vector to
estimate the autocorrelation matrix, the power spectrum p is conven-
tionally estimated by applying FFT on each snapshot and averaging
the squared magnitude of the result. A spectogram is a visual repre-
sentation of the spectrum estimation p as it varies with time.

Our goal is to recover the power spectrum p with improved spec-
tral resolution while significantly reducing the number of transmitted
pulses, namely we sub-sample y[k]. In the next sections, we show
that we can reconstruct p with resolution of 2π/(2P − 1)T while
transmitting only 2

√
P -1 pulses.

3. NESTED SAMPLING
3.1. Nested slow-time sampling
In this work, we propose sending only N < P pulses with non-
uniform time steps between them over the entire CPI. This way, by
exploiting the periods of time where no pulse is sent in a certain
direction, the same CPI is used for B-mode transmission sequences
and several spectral Doppler transmissions in different directions.

Following [9], we introduce two integers 1 ≤ N1, N2 ≤ P
such that N1 +N2 = N < P where P is the size of the observation
window. Given N1 and N2, we define the following two sets

SN1 = {m− 1, m = 1, 2, ..., N1} , (15)
SN2 = {n (N1 + 1)− 1, n = 1, 2, ..., N2} ,
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Fig. 1. Nested transmission pattern. N1 = N2 = 3 for an observation window of
size P = 12. Every circle represents a Doppler pulse emission.

which are illustrated in Fig. 1. Next, we consider a non-uniform
pulse train for spectral Doppler imaging such that the nth pulse is
sent at time pnT , where SN = {pn}N−1

n=0 is the ordered set of the
union of SN1 and SN2 . In this case, (1) becomes

sT (t) =

N−1∑
n=0

sin (2πfc (t− pnT )) , 0 ≤ t ≤ PT. (16)

Following the processing on the received signals described in Sec-
tion 2, the measured signal can be written similarly to (11) as

y [k, n] =

M∑
m=1

αme
2πjψmpn , 0 ≤ n ≤ N − 1, (17)

where we neglect the noise term. In vector form we have

yN [k] = ANα, (18)

where yN [k] ∈ CN×1 is the nested slow-time vector composed of
samples from N emissions and AN ∈ CN×M is a sub-matrix of
the Vandermonde matrix A in (12), whose nmth entry is given by
[AN ]nm = exp(2πjψmpn).

Denote the autocorrelation matrix RyN = E
[
yN [k]yHN [k]

]
∈

RN×N . Similar to (14), we have

zN = vec(RyN ) = (A∗
N �AN )p, (19)

where (A∗
N �AN ) ∈ CN

2×M and p ∈ RM×1. Define the differ-
ence set of SN as DS = {pj − pi, 0 ≤ i, j ≤ N − 1}. Then, the
matrix A∗

N �AN has dmth entry exp (2πjψmDS(d)).
The system defined in (19) is overdetermined for N2 ≥ M , if

(A∗
N �AN ) is full column rank. The following theorem, whose

proof can found in [9], provides the condition for this system to have
a unique solution.

Theorem 1. Let AN ∈ CN×M be the matrix defined in (18)
with |ψm| ≤ 1/2. Then, the matrix (A∗

N �AN ) ∈ CN
2×M

has 2N2(N1 + 1) − 1 distinct rows. It is full column rank if
2N2(N1 + 1)− 1 ≥M .

The number of distinct rows of (A∗
N �AN ) is equal to the

number of distinct elements in DS . The authors in [9] prove that for
the choice of SN given here, the difference set has exactly 2N2(N1+
1) − 1 distinct elements. Following Theorem 1, (19) has a unique
solution if 2N2(N1 + 1) − 1 ≥ M. In order to preserve the over-
all CPI, N1 and N2 are chosen such that N2(N1 + 1) = P . This
implies that if the statistics can be estimated then perfect recovery
of the blood power spectrum p, transmitting only N < P pulses, is
guaranteed for 2P > M.

3.2. Spectrum reconstruction

We now provide a fast method to reconstruct the blood power spec-
trum p from slow-time samples obtained using nested sampling.

First, we approximate the autocorrelation matrix R̂yN by using
samples yN [k] over neighboring depths k = k1, ..., kK

R̂yN =
1

K

kK∑
k=k1

yN [k]yHN [k] . (20)

Algorithm 1 Nested Blood Doppler (NBD)

Input: Nested slow-time vectors {y [k]}k=kKk=k1
, thresholding param-

eter λ > 0.
Output: Blood Doppler spectrum vector p.
1: Estimate R̂yN using (20) and compute zN = vec(R̂yN)
2: Form z1 by averaging
3: Compute p̂ = 1

2P−1
FFT(z1)

4: Perform soft-thersholding p = Tλ (p̂).

Algorithm 2 Smooth Nested Blood Doppler (SNBD)

Input: Nested slow-time vectors {yN [k]}k=kKk=k1
, smoothing and

thresholding parameters µ > 0 and λ > 0, smoothing matrix Q.
Output: Blood Doppler spectrum vector p.
1: Estimate R̂yN using (20) and compute zN = vec(R̂yN)
2: Form z1 by averaging
3: Compute p̂ = 1

2P−1
FFT

(
(I + µQ)−1z1

)
4: Perform soft-thersholding p = Tλ (p̂).

Since the autocorrelation is estimated from a finite number of snap-
shots, (19) is only satisfied approximately. In addition, we consider
additive noise, so that (19) becomes

zN = vec(R̂yN) = (A∗
N �AN )p + σ2vec(I), (21)

where σ2 is the noise as in Section 2.
We define Du as the ordered set of the unique elements of DS .

We then construct a new matrix A1 ∈ C2P−1×M from A∗
N �AN

where we remove the repeated rows and sort them so that the nth
row corresponds to the nth element in Du. Accordingly, we average
the corresponding rows from zN to get

z1 = A1p + σ2ẽ, (22)

where ẽ ∈ R2P−1×1 is all zeros except a 1 at the P th position.
Suppose now we limit ourselves to the Nyquist grid so that

ψm = 2πim/(2P − 1)T , where im is an integer in the range
0 ≤ im ≤ 2P − 2. In this case, A1 = FH ∈ C2P−1×2P−1 is
scaled IFFT matrix. Therefore, we apply a scaled FFT on (22) to get

p̂ =
Fz1

2P − 1
=

F(FHp + σ2ẽ)

2P − 1
= p +

σ2

2P − 1
1, (23)

where F is the FFT matrix and 1 ∈ R2P−1×1 is a vector of all
ones. Finally, we estimate the power spectrum p by removing the
noise variance from p̂ through soft-thresholding defined as Tλ(x) =
max(x−λ, 0) for a suitable choice of λ. The proposed technique is
outlined in Algorithm 1, referred to as NBD.

Often, the power spectrum is assumed to be smooth. Rather than
performing smoothing as part of post-processing, we instead formu-
late a least squares problem with a quadratic regularization func-
tional that imposes smoothness on the power spectrum

min
p

∥∥∥z1 − FHp
∥∥∥2
2

+ µ ‖Dp‖22 , (24)

where µ ∈ R is a smoothing parameter and D ∈ R2P−1×2P−1 is
a circulant matrix where the first row is all zeros except a 1 and -1
on the first and second entries respectively, and each row is a right
cyclic shift of the preceding row. The solution of (24) is given by

p̂smooth =
(
FFH + µDHD

)−1

Fz1. (25)
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The matrix DHD is also circulant, hence, it is diagonalized by the
FFT matrix, i.e, DHD = FQFH where Q ∈ R2P−1×2P−1 is
a diagonal matrix with Q(i, i) = 2−2 cos(2πi/(2P−1))

2P−1
. Taking the

latter into consideration, the solution can be simplified to

p̂smooth =
(
FFH + µFQFH

)−1

Fz1 =
F(I + µQ)−1z1

2P − 1
.

(26)
Again, we perform soft-thresholding on p̂smooth to estimate p.
This recovery method is summarized in Algorithm 2, referred to as
SNBD. Note that Algorithm 2 reduces to Algorithm 1 for µ = 0,
hence, it can be viewed as a generalization of Algorithm 1 where we
apply a smoothing window on z1 before performing FFT.

The complexity of the proposed methods is O(N2 + P logP ),
making them suitable for real-time estimation of the spectrum with
improved resolution of 2π/(2P − 1)T from fewer transmissions.

4. MINIMAL SAMPLING RATE
We next derive the minimal number of transmissions that can be
achieved using the nested sampling introduced in Section 3.

Recall that the number of emissions is given by N = N1 +N2

under the constraint thatN2(N1+1) = P . We, therefore, formulate
the next optimization problem

min
N1,N2

N1 +N2 s.t. N2 (N1 + 1) = P. (27)

Using the inequality of arithmetic and geometric means, we bound
the objective function from below by

(N1 + 1 +N2)− 1 ≥ 2
√
N2(N1 + 1)− 1 = 2

√
P − 1. (28)

This lower bound is obtained forN1 =
√
P−1, N2 =

√
P , making

them the optimal solution of (27). Thus, the minimal number of
slow-time samples required is N = 2

√
P − 1.

The desired spectral resolution of the estimation determines the
size P of the OW. Thereby, the last result implies that when an OW
of size P is required, the blood power spectrum can be reconstructed
using only Θ(

√
P ) Doppler emissions. For example, given an ob-

servation window with P = 256, the blood power spectrum can be
recovered using 31 pulses, which is only 12% of the OW, far less
than 30% previously proposed by state-of-the-art methods.

5. NUMERICAL EXPERIMENTS
We now proceed to demonstrate blood PSD reconstruction from
nested slow-time samples. The algorithms proposed in Section 3
were compared to BIAA and BSLIM, which were applied directly
on the slow time vectors yN [k] to estimate the PSD iteratively. Re-
alistic flow data was simulated using the Field II program with the
Womersley model [10] for pulsating flow from the femoral artery.
The autocorrelation matrix was estimated using K = 33 regularly
spaced samples along depth. The PRF was set to 5 kHz for a mean
velocity of 0.1 m/s and a beam/flow angle of 60o. The transducer
had a center frequency of 3.5 MHz. An OW of size P = 256 was
selected with N1 = 15 and N2 = 16 for the nested sampling.
The thresholding parameter λ for both NBD and SNBD was chosen
adaptively as 0.5 of the maximum of p̂ given by stage 3 in both
algorithms. For SNBD a smoothing parameter µ = 0.1 was used.

The resulting spectograms are shown in Fig. 2. We see clearly
that Welch’s method, BIAA and BSLIM suffer from substantially
more artifacts, mainly because of aliasing. NBD and SNBD both
produce a clear spectogram where the result of the latter is smoother,
as expected. Additional simulations, which are not present due to
lack of space, emphasizes the superiority of the proposed algorithms
when the observation window is taken to be smaller.

Fig. 2. Comparison results. (a) Welch’s spectogram (b) BIAA spectogram (c)
BSLIM spectogram (d) NBD spectogram (e) Smooth NBD spectogram. All spec-
tograms were normalized to have a dynamic range of 60 dB.

6. CONCLUSION
In this paper, we introduced a new irregular sampling scheme for
slow-time emissions. An analysis of the minimal number of trans-
missions required using the proposed approach revealed that the
power spectrum can be reconstructed with enhanced resolution from
a precedential small number of Doppler pulses. This offers a mode
where several blood regions can be interrogated simultaneously
while still updating the B-mode image at a high frame rate. A fast
recovery algorithm, based on the sparse emission pattern presented,
was derived and verified using Field II data to produce adequate
spectograms, outperforming current state-of-the-art methods, while
using much fewer pulses.
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