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ABSTRACT

Microscopic analysis of histological sections is considered
the “gold standard” to verify structural parcellations in the
human brain. Its high resolution allows the study of laminar
and columnar patterns of cell distributions, which build an
important basis for the simulation of cortical areas and net-
works. However, such cytoarchitectonic mapping is a semi-
automatic, time consuming process that does not scale with
high throughput imaging. We present an automatic approach
for parcellating histological sections at 2 pm resolution. It is
based on a convolutional neural network that combines topo-
logical information from probabilistic atlases with the texture
features learned from high-resolution cell-body stained im-
ages. The model is applied to visual areas and trained on a
sparse set of partial annotations. We show how predictions
are transferable to new brains and spatially consistent across
sections.

Index Terms— Brain Parcellation, Human Brain, Map-
ping, Convolutional Networks, Deep Learning.

1. INTRODUCTION

Precise delineations of cytoarchitectonic areas in cell-body
stained histological sections of the human brain provide a
basis for a multimodal brain atlas. They are indispensable
for allocating the multiscale functional imaging, physiologi-
cal, connectivity, molecular, and/or genetic data to anatomi-
cally well specified entities of the human brain organization
at high spatial resolution [[1]. Cytoarchitectonic areas are dis-
tinguished by variations of the cell distribution in the cortical
laminae and with respect to the columnar organization of the
cortex. Parcellation of cortical areas therefore requires an im-
age resolution of 1-2 ym to distinguish individual neurons,
and to capture their morphology. Image analysis and mul-
tivariate tools have been introduced to detect boundaries of
cortical areas in a reproducible semi-automatic way [2]. This
method, however, is time- and labor-intensive, and signifi-
cantly constraints mapping efforts in a large sample of his-
tological sections and/or brains. Thus, methods with higher
degree of automation are needed.

This paper proposes a convolutional neural network
(CNN) model that parcellates high-resolution sections from
different subjects by exploiting 1) prior knowledge about rea-
sonable topologies as given by existing probabilistic atlases,
and 2) precise local features extracted from the cell-stained
tissue scan. Our model is trained on partial delineations and
produces parcellations that are transferable to new brains and
spatially consistent across sections.

After the recent success of CNNs for natural image clas-
sification, approaches for efficient semantic segmentation
with CNNs were developed (e.g., [3]]). There are first works
proposing CNN-based models to parcellate entire 3D MR
volumes according to different segmentation protocols [4} 5]].
In contrast, we aim towards parcellating high-resolution cell-
stained histological sections at the quality of a purely cytoar-
chitectonic reference parcellation.

To our knowledge, our approach is the first to tackle auto-
matic parcellation of cortical areas in histological sections.
This paper makes the following contributions: We train a
model that automatically predicts 13 areas of the human vi-
sual system in histological sections. To deal with the fact that
we only have access to partially delineated sections for train-
ing, we automatically create accurate gray/white matter seg-
mentations using the same CNN architecture, and use them
to distinguish between “unlabeled cortex” and background.
We evaluate the influence of exploiting probabilistic atlases
on the anatomical correctness of the automatic parcellation,
and show results indicating that the model is transferable to
previously unseen brains and consistent across multiple con-
secutive sections in the same brain.

2. MODEL

2.1. Network Architecture for Semantic Segmentation

We base our CNN architecture on the semantic segmentation
approach of [3]. They designed a network with a contract-
ing path, consisting of several “blocks” that contain several
convolutional layers and one pooling layer to downsample
the activations each. This is followed by an expansive path
with “blocks” of one upsampling layer and several convolu-
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Fig. 1: Base net, based on [3], consisting of 10 blocks con-
taining several layers (denoted by colored rectangles). The
number of channels of the layers is shown at the bottom of
each block. Batch normalization and ReLU are applied af-
ter each convolution. Total number of parameters: 1479728.
Receptive field size: 14812 pa? ~ 32 mm?.

tional layers. The activations from the contracting path are
appended to the expansive path to enable the propagation of
context information to higher resolution layers. This architec-
ture produces precise segmentations for any input size and is
thus suited for efficient parcellation of entire brain sections.

Cytoarchitectonic parcellation of the cortex relies on the
size and composition of cortical laminae [2]. Thus for the
classification of any pixel inside the cortex, we choose to take
the whole depth of the cortex into account. Assuming a cor-
tical depth of 2-4 mm and an input resolution of 2 um, the
receptive field of the CNN should be about 10002-2000% pz2.

Following these considerations, we increase the receptive
field of the network by inserting one “block” containing con-
volutional layers with stride 4 before the contracting path. Al-
though a 2 pm resolution is needed to see the relevant cytoar-
chitectonic features for mapping, the expected practical local-
ization accuracy of the resulting cytoarchitectonic borders is
much lower. We take this into account by setting the output
resolution of our network to 16 ym, which has the practical
benefit of significantly reducing the memory requirements of
the model during training.

In order to train converging networks we found it neces-
sary to add batch normalization after each convolutional layer
and use a relatively high learning rate. Fig.[T|shows details of
our network architecture.

2.2. Exploiting probabilistic atlas information
To identify a certain area in the brain, neuroscientists first
identify a region of interest (ROI) on a low-resolution global
view and then map the precise borders of this area by means
of local texture patterns on a high-resolution local view. In
a similar manner, our model combines precise local features
from high-resolution cell-stained tissue with a relatively im-
precise but topologically correct probabilistic atlas prior. We
use the JuBrain atlaﬂwhich gives our model probability maps
for each area, helping to disambiguate areas that have similar
texture but are located in different locations of the brain.
Using the probabilistic atlas requires a registration from
the atlas space to the space of the individual brain. Since we

Yavailable at http://www.jubrain.fz-juelich.de/
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Fig. 2: Atlas-aware net including transformed probabilistic
atlas (atlas prior) in an additional contracting path. Activa-
tions from both contracting paths are appended to the joint
expansive path (dashed lines). Input block 1’ for the atlas
prior consists out of one 5 X 5 x 16 convolution (no pooling).

are only interested in rough estimates of the atlas data on the
individual section, we calculated an affine registration from
the atlas to the individual sections at 8 yum resolution. An ex-
ample of projected probabilities for one area is depicted in
Fig.Ph. We add a second contracting path for the atlas data
of every area that should be predicted by the model, and join
the resulting activations to the bottom of the cell-stained im-
age expansive path (Fig. 2). This enables the network to pro-
cess each input type individually in the contracting paths and
jointly in the expansive path.

We believe that the network learns the atlas prior faster
than the image of the cell-body stained section, because the
atlas data are less complex and directly represent an estimate
of the output labels. This bears the danger that the model
converges to an inferior solution, which is the local optimum
of predicting a linear combination of the probabilistic maps
without learning the underlying texture pattern contained in
the cell-stained image. In particular, we observed this behav-
ior in architectures that were joining the atlas and cell-stained
image paths earlier in the contractive paths. To overcome this
problem, we add noise to the atlas input (set every input node
to 0 with a chance of 20%) and use an iterative training pro-
cedure: First, the model is trained on only the cell-stained
image and only after convergence training is continued using
both cell-stained image and atlas information. This procedure
ensures that the model learns to use the information contained
in the cell-stained image first, and then adapts to include in-
formation gained from the atlas.

2.3. Data preparation

The learned model should be robust to the local shape of the
cortex (e.g., gyri, sulci) and recognize cortical areas by their
texture. To support this, we normalize the input data by rotat-
ing each input crop along the main direction of the gradient
of the Laplacian field between outer and inner cortical bound-
ary (using the segmentation from Sec. [3). This “Laplacian
field orientation correction” aligns all input data and makes
the model more applicable to new subjects (see Sec. ). In
our evaluation, models trained with this rotation of input data
performed about two Dice coefficient points (a.k.a. F1 score)
better than models trained with random rotation of input data.
This mildly improves the results.
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Fig. 3: Gm/wm/bg segmentation, with input image left and
segmentation result right. Solid lines represent manual delin-
eations of inner (black) and outer (white) cortical boundary.

2.4. Dealing with complex background class

As groundtruth labels we use partial delineations of visual ar-
eas on high-resolution brain sections. We can neither expect
all visual areas to be labeled in an annotated section (partial
annotation), nor do we have access to groundtruth annotations
in all consecutive sections (sparse annotation). Thus the back-
ground class is a compound of very different concepts: white
matter (wm), non-visual or non-labeled cortex (unknown cor-
tex, gm), and background (bg). This makes it much harder
for the net to learn the background class. Thus, we split up
the background label in its distinct concepts wm, gm, and bg
(see Sec. E[), and extend the groundtruth to include the classes
“unknown cortex” and “white matter”.

3. GRAY / WHITE MATTER SEGMENTATION

For the Laplacian field orientation correction (Sec. 2.3) and
the extension of partial annotations (Sec. [2.4), a reliable
gray/white matter segmentation is needed. We have devised
a two-step procedure with minimal labeling overhead to train
a CNN model with the base architecture (Sec. [2.1) for this
task. First, we train a model for the two-class cortex segmen-
tation task. As groundtruth all available delineations of the
visual cortex were set as “cortex” and the remaining pixels
as “background”. Obviously, the generated background class
also contains (non-visual) cortex. Thus, we adapt the loss
function to weigh the error “predict cortex, true background”
with 0.5 while weighing the other error with 1. In the second
step, we labeled 20 sections with wm, gm, and bg, by man-
ually inserting wm labels in the cortex segmentations of the
previous step and trained a model on these sections.

The resulting three-class segmentation has a resolution of
8 pm, is robust to small cuts and rips in the tissue and to noise
in the background and sets a precise outer cortical boundary
(Fig. B). Compared to expert segmentations, the automatic
segmentation is consistent and reproducible, but seems to sys-
tematically underestimate the inner cortical boundary (espe-
cially in the curves).

4. RESULTS

Dataset. The dataset used for training and validating the
models contains in total 111 cell-body stained histological
sections of the human visual cortex originating from four dif-
ferent brains. Mapping resulted in 13 areas (primary and

02 01 00 predicted label predicted label
1: hOcl [P PP — b L Aol KON O e, N
2: hOc2 1 1
3: hOc3d 2 %
4: hOc4d 3 1 08
5:hOc3v  _, 5 (55
6:hOcdv 2 6 06
7:hOc4la @ } é N
8:hOcdlp " 9 u
9:h0c5 510 19 | -
10: FG1 813 12 =
11: FG2 13 1 02
12: FG3 12 15
13: FG4 16 16

(a) label frequency (b) base: D¢ = 0.62,
in dataset € =233

(c) atlas-aware:
De =0.72,e =21.2

Fig. 4: Quantitative evaluation of base and atlas-aware
model. Label numbers 14-16 denote labels gm, wm, and bg.

higher visual areas of the dorsal and ventral stream), with an
average of 5 mapped areas per section. Fig. @a|shows the fre-
quency of the areas in the dataset. As described in Sec.[2:4]
the groundtruth was extended by automatic segmentations of
unknown cortex, white matter, and background.

Training. The models were trained on 2/3 of the sec-
tions (1/3 held out for test and validation) by drawing patches
of size 2000 x 2000 from the images (85 % from the delin-
eated areas, 15 % from background). We used a learning rate
of 0.05 and a batch size of 20. Usually, training converged
after 5000 iterations. Although the number of training sec-
tions is small, we do not observe any overfitting. We attribute
this to the random sampling during training which never pro-
duces the same patch twice, and the difficulty of the task. The
trained model has expressive filters in the first layers.

Evaluation. Quantitative evaluation scores were com-
puted on the held-out test set. The standard score to assess
the quality of a segmentation is the mean Dice coefficient D¢
(e.g., [5 4]]). However, this does not take into account the
spatial information of the segmentation. For anatomical par-
cellation, an error made right at the border between two areas
is “less severe” than confusing two areas that lie in different
regions of the brain. Thus we additionally report the pixel
distance error (e) which assigns to each error a penalty based
on the distance between the misclassified pixel and the nearest
groundtruth pixel that actually is of the misclassified class [6]:
er = YN d2(i), with d2(i) the squared Euclidean distance
of the ith misclassified pixel to the nearest true pixel with this
class. Following [6], the error is normalized to range 0 and
approx. 100, so it can be understood as a percentage of the

maximum possible error: € = 100 * \/f, with A being the

total number of pixels that were evaluated.

4.1. Influence of atlas data and anatomical correctness

To evaluate the contribution of the global anatomical infor-
mation (atlas prior, Sec. @), we trained one model without
atlas information (base) and compared it to our model includ-
ing atlas information (atlas-aware). The base model predicts
the most frequent areas (hOcl, hOc2, hOc4la) with good pre-
cision (Fig. 3p), but only the atlas-aware model manages to
predict areas which are not as much represented in the dataset
(Fig. Bk, and confusion matrices in Fig. @). In general, the



Fig. 5: Qualitative evaluation of base and atlas-aware models, with (a) annotated areas (color) and projected probability of
area hOcl from the atlas (gray), (b) segmentation with the base model (no atlas prior), and (c) - (e) segmentations with the
atlas-aware model on consecutive sections. Note that the confusion of non-labeled cortex with area FG4 is to be expected,
because of all annotated areas, FG4 is closest to surrounding cortical areas. For the color coding see Fig. @

Fig. 6: Transferability to new brains, with (a) groundtruth,
(b) predictions of a model trained on all brains (¢ = 10.0),
and (c) predictions of a model trained on three of the four
brains in the dataset (¢ = 14.2). The displayed section is
from the brain excluded in (c). The error € is computed for
the displayed section. For the color coding see Fig. @

model performs better on more frequent areas, yielding higher
D¢ scores. The error € of the atlas-aware model drops 2
points and the D¢ score rises by 0.1 compared to the base
model. The results indicate that the network indeed learns to
resolve labelling errors by exploiting the atlas prior to limit
the number of possible labels per example.

4.2. Spatial consistency and transferability to other brains
Figures [Sk-d show predictions of the atlas-aware model on
three sections with distance 1.2 mm. Although the model has
no direct knowledge of spatial inter-slice dependencies, the
predictions are consistent in the z-direction. In particular the
boundary between hOcl and hOc2 is consistent.

To see how well our model generalizes w.r.t. different sub-
jects, we trained a new model with one particular brain ex-
cluded from training, and evaluated on the latter (see Fig.[6).
This model predicts more frequent visual areas reasonably
well, and the error € only rises 4 points to 14.2 compared to
a model trained on all brains. This suggests that our model is
in principle transferable to previously unseen brains.

5. CONCLUSION

We presented a model that predicts visual areas on high-
resolution histological sections exploiting both texture fea-
tures and probabilistic atlas information. The predictions
are spatially consistent and reproducible on sections of pre-

viously unseen brains. We have shown that a probabilistic
atlas prior has a positive effect on the model performance.
In a straightforward two-step process we generated accurate
gray/white matter segmentations from a few training data
points. In future work we plan to extend this model to include
more cortical areas, and further study generalization across
subjects. Possible improvements include enforcing topologi-
cal constraints, and exploiting 3D information as provided in
reconstructed volumes.
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