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ABSTRACT
A wide range of biomedical applications require detection,
quantification and modelling of curvilinear structures in 3D
images. Here we propose a 3D contrast-independent approach
to enhance curvilinear structures based on the 3D Phase Con-
gruency Tensor concept. The results show that the proposed
method is insensitive to intensity variations along the 3D curve,
and provides successful enhancement within noisy regions.
The quality of the 3D Phase Congruency Tensor is evaluated by
comparing it with state-of-the-art intensity-based approaches
on both synthetic and real biological images.

Index Terms— Image enhancement, vesselness, neurite-
ness, Phase Congruency Tensor, 3D images.

1. INTRODUCTION

THE explosive growth in size and complexity of biomed-
ical imaging data and the need for extracting quantita-

tive information, increasingly requires sophisticated bioimage
analysis methods. As a common requirement of strong and
durable image enhancement, segmentation and analysing of
curve-like features are essential in bioimaging. Accordingly,
a significant number of image processing solutions has been
propounded to enhance and extract 3D curve-like structures
such as blood vessels. [1, 2], neurons [3], microtubules [4],
and others as reviewed in [5]. Despite such a wide range of
approaches, the robust enhancement of 3D curvilinear struc-
tures remains challenging due to the intensity variations along
the 3D curve. To overcome this challenge, we propose a 3D
contrast-independent approach to enhance curvilinear struc-
tures based on the Phase Congruency Tensor (PCT) concept [6].
Also, it will be shown that by replacing the Hessian tensor with
PCT, we may actively reduce the dependence on local image
contrast which has hampered other tensor-based methods. In
particular, we show how the PCT concept may be used to im-
prove standard 3D curvilinear feature measurement techniques,
like vesselness and neuriteness.

2. RELATED WORK

2.1. 3D Intensity-based curve-like feature enhancement

2.1.1. Using tensors for local feature representation

The tensor representation of the local image structure almost
provides the most information about how much the image

structures change through and across the dominant directions
and, is generated by combining the outputs from polar sepa-
rable quadrature filters [7]. Assume that an image I(p), that
p = [x, y, z]T is a column vector representation of the 3D
spatial location. A suitable notation of the local structure of
the surface in the region of p is given by the tensor defined as
follows:

T =
∑
Θ

‖qΘ‖(uΘu
T
Θ), (1)

where qΘ is the output from an oriented quadrature filter and
uΘ is the column vector in the direction Θ. In the 3D case,
an orientation Θ = (θ, φ) can be specified by elevation θ and
azimuth φ angles on a sphere of unit radius [8], and uΘ is the
column vector:

uΘ = uθ,φ = [sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)]T . (2)

2.1.2. Scale space

Curvilinear features can be observed in various sizes and dif-
ferent scales in an image. The space scale representation is
mostly used [2]. The essential idea is to insert the original
image inside a group of progressively smoothed images, in
which fine-scale details are successively suppressed. This ap-
proach is usually accomplished by the use of Gaussian filters,
or their derivatives, with multiple scales obtained by varying
the value of the variance.

For a given 3D image Iσ(p) and given scale σ, the neigh-
borhood of a point p can be estimated by its first Taylor ex-
pansion:

Iσ(p+∆p) ≈ Iσ(p)+∆pT∇Iσ(p)+∆pTHσ(p)∆p, (3)

where Hσ(p) is the Hessian matrix, a tensor of second order
partial derivatives of I at point p and scale σ. In three dimen-
sions, a spherical neighborhood met at the point p is outlined
by Hσ(p) over an ellipsoid whose axes are along the eigen-
vectors vσ,i of the Hessian and the respective semi-lengths
are the magnitudes of the that eigenvalues λσ,i. Therefore,
the detection of curvilinear structures can be performed by an
analysis of the eigenvalues and eigenvectors. Two of the most
well-known ways in this area that has been called vesselness
and neuriteness.



3. METHODS

Our 3D extension of a 2D Phase Congruency Tensor (PCT)
concept introduced by [6] is proposed here. The 3D PCT con-
cept is then used to define 3D curvilinear feature enhancement
techniques which are PCT vesselness and PCT neuriteness.

3.1. Orientation

In order to properly calculate the 3D phase congruency and our
3D PCT, a set of N points 3D orientations are defined using
a concept of uniformly distributed points on the unit sphere.
Such a distribution of all details can be found in [9]

3.2. 3D Phase-based detection

In terms of the local image phase approach that is contrast-
independent curvilinear enhancement has been investigate
by [10]. The calculation of local phases needs the use of
quadrature pairs of filters to the image. Consequently, for a
given image I(p) and a quadrature pair of even F es,Θ and odd
F os,Θ filters at scale s and orientation Θ, the response vector is
given by its even and odd components es,Θ(p) and os,Θ(p):

[es,Θ (p) , os,Θ (p)] =
[
I (p) ∗ F es,Θ, I (p) ∗ F os,Θ

]
. (4)

The amplitude of the sth component is defined as:

As,Θ (p) =

√
es,Θ (p)

2
+ os,Θ (p)

2
, (5)

and the local phase given by:

ϕs,Θ (p) = atan

(
os,Θ (p)

es,Θ (p)

)
, (6)

To implement phase enhancement, several quadrature filters
have been proposed, especially the log-Gabor filter [11]

For our method, a 3D log-Gabor filter has been used. This
is the one has two components and is obtained by multiplying
the angular and radial components of the Gaussian transfer
function on the logarithmic frequency domain [11]:

L̂(ω,Θ) = exp

(
−

ln
(
ω
ω0

)2

2 ln
(
σω
ω0

)2

)
· exp

(
− Θ2

2σ2
Θ

)
, (7)

where ω0 is central radial frequency of filter and σω is the
standard deviation controlling the filter bandwidth. Θ is the
orientation of the filter and σΘ determines the angular spread.

3.3. Phase congruency

Phase congruency has been used to find a wide range of low-
contrast features including step edges, line and roof edges
[12]. The phase congruency design assumes that features
are recognized at points where the Fourier components are

maximally in phase. In 3D, the phase congruency at several
orientations is defined as [12]:

PCs,Θ(p) =
∑
Θ

(PCΘ(p)) , (8)

and the phase congruency at each orientation Θ is defined as:

PCΘ(p) =

∑
swΘ(p) max(As,Θ(p)∆Φs,Θ(p)− t, 0)∑

sAs,Θ(p) + ε
.

(9)
As,Θ(p) is the amplitude of the image component at the loca-
tion p through the use of a 3D log-Gabor filter with the scale
s and orientation Θ. The t is a noise threshold and ε a factor
that ensures against the division of zero [10]. The weight of
frequency spread wΘ(p) is defined as:

wΘ(p) =
1

1 + exp (µ(b− lΘ(p)))
, (10)

which penalizes frequency distributions that are expressly nar-
row. The parameters µ and b in this function are constants
describing a gain factor and a cut-off value, respectively. A
measure of filter response spread is defined as:

lΘ(p) =
1

ℵ

(∑
sAs,Θ(p)

Amax(p) + ε

)
, (11)

where ℵ is a total number of scales. Finally, a phase deviation
∆Φs,Θ(p) in Equation 9 is defined as:

∆Φs,Θ(p) = es,Θ(p)ϕ̄es,Θ(p) + os,Θ(p)ϕ̄os,Θ(p)

− |es,Θ(p)ϕ̄os,Θ(p)− os,Θ(p)ϕ̄es,Θ(p)|, (12)

where ϕ̄{e,o}
s,Θ (p) =

∑
s {e, o}s,Θ(p)/EΘ(p), and

EΘ(p) =

√√√√(∑
s

es,Θ(p)

)2

+

(∑
s

os,Θ(p)

)2

,

where EΘ(p) is the local energy and ϕs,Θ(p) is the cosine of
the deviation of the phase while ϕ̄s,Θ(p) is the overall mean
phase angle.

3.4. 3D PCT vesselness and 3D PCT neuriteness

3D piecewise curvilinear segments can be enhanced by
analysing the relations between eigenvalues and eigenvectors
of the 3D Hessian. In a similar way, using Equations 13
and 15, our 3D PCT-based vesselness and 3D PCT-based
neuriteness are defined where the eigenvalues of 3D Hessian
are substituted with those of the 3D PCT.

3.4.1. 3D vesselness
Vesselness as defined in [2] is computed as the ratio of the
eigenvalues of Hσ(p) :

Vσ =


0 λσ,2, λσ,3 < 0

exp

(
−
R2
β

2β2

)(
1− exp

(
− R

2
α

2α2

))(
1− exp

(
− S

2

2c2

))
otherwise

,

(13)



where

S =
√
λ2
σ,1 + λ2

σ,2 + λ2
σ,3, Rβ =

|λσ,1|√
|λσ,2λσ,3|

, Rα =
|λσ,2|
|λσ,3| ,

where α, β and c are positive real user-defined parameters.
The Rβ ratio calculates blob-like features [2] and the Rα ratio
helps to discriminate between plate-like and line-like structures
[13]. S is equal to half of the maximum Frobenius norm
and evaluates whether the eigenvalues are large compared to
noise. Finally, multi-scale vesselness, for a given set of scales∑

= {σi} and i = 1, 2, 3..., can be calculated as [6]:

V∑ = max
σ∈
∑ (Vσ) . (14)

3.4.2. 3D neuriteness

For the another Hessian matrix based method has been pro-
posed by [14] for 2D and extended in [3] that is required
second-order derivatives of the Gaussian Kernel with a given
scale σ, for 3D as follows:

Nσ =


λσ,max
λσ,min

λσ,max < 0

0 λσ,max ≥ 0
, (15)

where

λσ,max = max(|λ
′

σ,1|, |λ
′

σ,2|, |λ
′

σ,3|),
λσ,min = min(λσ,max),

λ
′

σ,1 = λσ,1 + γλσ,2 + γλσ,3,

λ
′

σ,2 = γλσ,1 + λσ,2 + γλσ,3,

λ
′

σ,3 = γλσ,1 + γλσ,2 + λσ,3.

Parameter γ is chosen by 1/3 as in [3].

4. RESULTS

The performance of the 3D PCT-based methods for curvilin-
ear structure detection was tested on a synthetic image (Fig-
ure 1),also real biological images of keratins and neuronal
networks. A synthetic image was designed to simulate branch-
ing structures in a noisy environment. Grid lines with a width
of 10 pixels were generated on a bright, constant background.
To simulate a real-life scenario, Gaussian noise with the 18
SNR was added to the image. Figure 1 illustrate the compari-
son between 3D Hessian- and 3D PCT-based methods when
applied to such a synthetic image. Finally, Figure 2 demon-
strates the result of tested real images. and shows the result of
the proposed 3D PCT-based methods by comparing with the
traditional 3D Hessian-based versions.

(a) (b) (c)

(d) (e)

Fig. 1: Comparison between Hessian- and PCT-based ap-
proaches applied to a synthetic image (a): vesselness (b), neu-
riteness (c), PCT vesselness (d), and PCT neuriteness (e). 2D
max projections of 3D images are shown.

5. CONCLUSION

Enhancement of the curvilinear structure is important for many
biomedical applications. In this research we have proposed
the 3D Phase Congruency Tensor concept used to define 3D
contrast-independent curvilinear feature enhancement meth-
ods such as PCT vesselness and PCT neuriteness. Contrary
of the 3D Hessian-based intensity-dependent methods, results
indicated for the PCT-based approaches show a much higher
degree of uniformity in the results, which greatly facilitates an
accurate feature enhancement. Finally, the 3D PCT concept
can be adapted to methods for finding other non-curvilinear
structures such as junctions or ending points where high cur-
vature values exist along more than one principal directions.
Compare to traditional methods like vesselness and neurite-
ness, our proposed method resists to noisy background and
also strong to enhance curve-like features in the bioimage.
Other use of the 3D PCT concept in exchange for the 3D Hes-
sian matrix could be in 3D anisotropic diffusion schemes [15]
and 3D live-wire tracing methods [14].
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