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Abstract

Optimal representations of the genetic structure underlying complex neuroimaging phenotypes lie 

at the heart of our quest to discover the genetic code of the brain. Here, we suggest a strategy for 

achieving such a representation by decomposing the genetic covariance matrix of complex 

phenotypes into maximally heritable and genetically independent components. We show that such 

a representation can be approximated well with eigenvectors of the genetic covariance based on a 

large family study. Using 520 twin pairs from the QTIM dataset, we estimate 500 principal genetic 

components of 54,000 vertex-wise shape features representing fourteen subcortical regions. We 

show that our features maintain their desired properties in practice. Further, the genetic 

components are found to be significantly associated with the CLU and PICALM genes in an 

unrelated Alzheimer’s Disease (AD) dataset. The same genes are not significantly associated with 

other volume and shape measures in this dataset.
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1. INTRODUCTION

The field of Imaging Genetics aims to connect the human genetic code with quantitative 

imaging-based phenotypes. Two complimentary approaches are typically used: on the one 

hand, we search for common genetic variants (GV) which explain some variance in well-

established phenotypes. On the other hand, we would like to discover signatures of complex 

imaging phenotypes associated with specific genes of interest. Both of these approaches are 

hampered by the very large dimensionality of both the genetic (dim = 106 – 108) and 

imaging (dim = 103 – 106) data, particularly in brain MR imaging. For example, simply 

identifying several new variants associated with subcortical volume required a Genome-
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Wide Association Study (GWAS) of more than 20,000 subjects [1]. Alternative strategies for 

identifying GV-phenotype interactions exist. The most common approach in the genetics 

community connects a single (univariate) phenotype of interest with a weighted set of GVs 

known as a polygenic risk score [2]. The reverse strategy connects many phenotypes to 

individual GV’s. In the meta-analytic context, this approach, known as TATES [3], combines 

many mass-univariate studies into a weighted phenotype score for each variant. Because this 

approach requires a correlation analysis between every phenotype and every GV, it becomes 

implausible for dense imaging phenotypes. Traditional fully multivariate linear models, such 

as Canonical Correlation Analysis (CCA) [4] or the closely related Partial Least Squares 

(PLS), have also been applied to imaging genetics. Though potentially more complex, these 

models remain computationally tractable even for very high-dimensional data, as they can be 

readily kernelized [5]. Further, the PLS approach can be extended into a multi-site meta-

analysis study, making its use quite practical [6]. However, interpreting CCA or PLS 

component pairs – a set of weights for both the phenotypes and the genotypes – becomes 

challenging. Expensive post-hoc procedures may be needed to identify specific GVs 

implicated by the models [7].

In this paper, we take the intermediate approach more akin to the TATES model, but without 

the computational requirements. Our aim is to find a set of phenotypic components that best 

represent the genetically correlated aspects of the phenotype. We would like a set of features 

that maximally capture the phenotype heritability using a minimal number of components. 

In other words, by analogy to independent components analysis, we want components with 

(1) maximum heritability and (2) minimum genetic correlation between them. Should we 

find such a set of components, we should expect each of them to be maximally associated 

with some set of GVs, while at the same time having a different set of associated GVs from 

the other components. In this way, we hope to recover a universal set of features from a 

complex imaging phenotype that can be used to both empower a GWAS study and to 

improve the chances of finding associations with candidate polymorphisms. Simplified 

versions of the proposed pipeline have been used in brain imaging, particularly ones that 

focus on cortical parcellation [8]. However, the simplification of the complex genetic 

structure of the brain to discrete binary clusters is likely to miss important effects, likely 

reducing the power of such a representation. This effect has been shown in the context of 

disease biomarkers [9], for example.

For computational tractability, we use the narrow-sense heritability model in a family study 

of monozygotic and dizygotic twins to compute a genetic covariance matrix. While a full 

genetic components analysis would require an iterative log-likelihood optimization [10], we 

approximate the components by the eigenvectors of the genetic covariance matrix. Our 

imaging features are comprised of roughly 54,000 vertex-wise features mapped to boundary 

surfaces of fourteen subcortical regions. Our components have the desired properties of high 

heritability and genetic independence. At the same time, when applied to an unseen 

Alzheimer’s dataset with different demographics and clinical characteristics, the resulting 

feature set is able to identify significant association with AD risk genes not associated with 

other subcortical shape-based features. This suggests that our approach may indeed lead to 

better-powered imaging genetics studies.
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2. GENETIC COVARIANCE DECOMPOSITION

We begin by describing the univariate analysis of heritability. Family-based heritability 

estimates use maximum likelihood variance decomposition methods to break down the 

population variance and identify narrow sense heritability based on the expected kinship of 

the individuals. The covariance matrix Ω for a pedigree of individuals is given by:

(1)

where σg
2 is the genetic variance due to the additive genetic factors, Φ is the kinship matrix 

representing the pair-wise kinship coefficients among all individuals, σe
2 is the variance due 

to individual-specific environmental effects, and I is an identity matrix. Narrow sense 

heritability is defined as the fraction of phenotypic variance σP
2 attributable to additive 

genetic factors,

(2)

By analogy to general (phenotype) covariance, we can extend (1) to genetic covariance 

between phenotype X and Y. This can be estimated by fitting the covariance decomposition 

model

(3)

where ⨂ is the Kronecker product operator, and Σg, Σe are the genetic and environmental 

covariance matrices. The intuition behind the closely related genetic correlation, 

, may be described as the extent to which relatedness of two individuals 

predicts phenotype Y in one individual, knowing phenotype X in the other. Of more interest 

to us is another interpretation: genetic correlation may imply shared genetic associations, 

also known as pleiotropy (Fig. 1).

With the above interpretation of genetic correlation in mind, it should become clear why a 

principal genetic decomposition can be expected to increase power in association studies. 

Now, suppose we wish to find a set of genetic and environmental principal components 

(PCs) ΨG and ΨE to fit our data:

(4)

with F representing fixed effects, e.g. sex and age. An optimization problem to recover the 

genetic components can then be written as −2 log L =
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(5)

In (5), the last two terms are functions of both the PCs and the fixed effect term in (4). 

Kirkpatrick [10] solves (5) approximately with iterative PC pair rotation. However, with 

even a modest-sized problem, such an optimization becomes numerically challenging. Here, 

we opt instead for directly decomposing the genetic covariance matrix into its spectral 

components:

(6)

Computing Σg requires solving a series of simpler bivariate log likelihood problems, which 

nevertheless have some computational cost as well. We use standard PCA on two unrelated 

sets of individuals of equal size in our family study for initial dimensionality reduction. 

Phenotypic PCs are computed separately on each set and combined, with Σg estimated on 

PC coordinates. Because our initial feature set is twice the number of twin pairs, the genetic 

covariance matrix cannot be full-rank. For this reason, we estimate the genetic covariance 

structure of the PC coordinates, and order the Σg eigenvectors by their heritability. In 

practice, this approach works quite well, eliminating redundant components. The final 

genetic component loadings can then be trivially mapped via a linear combination to the 

original shape vertex coordinates.

3. SUBCORTICAL SHAPE FEATURES

Our subcortical shape measures are computed using a previously described pipeline [11, 12], 

available via the ENIGMA Shape package1. Briefly, structural MR images are parcellated 

into cortical and subcortical regions (FreeSurfer 5.3). The binary region images are then 

surfaced with triangle meshes and parametrically (spherically) registered to a common 

region-specific surface template [13]. This leads to a one-to-one surface correspondence 

across the dataset at roughly 27,000 vertices describing the left and right thalamus, caudate, 

putamen, pallidum, hippocampus, amygdala, and nucleus accumbens. Each vertex p is 

endowed with two shape descriptors:

1. Medial Thickness, D(p) = ‖cp − p‖, where cp is the point on the medial curve c 
closest to p

2. Log of the Jacobian determinant J arising from the template mapping φ, J: 

Tφ(p)ℳt → Tpℳ

The resulting shape descriptors can be readily mapped to the subcortical models, and have 

been shown to be highly heritable both in family and general population studies [11,12].

1http://enigma.usc.edu/protocols/imaging-protocols/
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4. EXPERIMENTS

Our principal genetic components were estimated using 1040 twins scanned in the 

Queensland Twin Imaging Study (QTIM), 148 monozygotic pairs, mean age 23.1 +/− 3.1. 

We used the Sequential Oligogenic Linkage Analysis Routines (SOLAR) software package2 

[14] for heritability and genetic correlation analysis. SOLAR uses maximum likelihood 

variance decomposition methods. We visualize the principal components of the phenotypic 

(full) variance and genetic variance in Figures 2 and 3. To assess the parsimony of the 

genetic structure representation, we first visualize the genetic covariance matrices of the first 

20 PCs (Fig. 4). Model fit quality using up to the first five components is compared in Table 

1, using the Akaike Information Criterion AIC = 2k − 2 log(L)

To test our hypothesis that genetic PCs are better able to capture effect of known variants, 

we selected 16 genes known to increase risk of acquiring Alzheimer’s Disease. We used 686 

subjects from the ADNI 1 cohort, 144 AD patients, 337 patients with Mild Cognitive 

Impairment (MCI), and 205 healthy controls, mean age = 76.0 +/−5.1. Using the first 100 

genetic component coordinates as phenotypes, we performed candidate variant association 

analysis on the selected AD risk genes. We performed the same analysis using (1) 

phenotypic PC coordinates, (2) vertex-wise features, using False Discovery Rate correction, 

and (3) region volumes.

The effect of APOE was amply detected using several of the phenotypic components as well 

as hippocampal vertex-wise measures, consistent with the literature. No other gene was 

significantly associated with any of the traditional subcortical volume and shape measures 

tested. Encouragingly, the PICALM and CLU genes were significantly associated with two 

distinct genetic components of variance after Bonferroni correction. The overall comparison 

of standard PCA and principal genetic components is displayed in Figure 5.

5. CONCLUSION

We have presented a straightforward approach to identify maximally heritable components 

of complex imaging phenotypes. We use the family-based study design to enable robust 

estimation of genetic components via eigenvalue decomposition of the genetic covariance 

matrix. The deeply structured nature of brain imaging, at odds with the largely unstructured 

human genome, presents both a challenge and an opportunity in imaging genetics. Here, we 

have exploited the structure of the brain to generate a universal set of imaging-based keys 

which we hope can be used to unlock the brain’s genetic code with more ease. Our 

preliminary results using a modest-sized Alzheimer’s Disease dataset suggest that our 

genetic components do indeed generalize to unseen data as we had hoped. Future work will 

continue to use our genetic shape representation in both GWAS and candidate GV studies, as 

well as explore using spatial regularization in genetic component recovery.

2http://www.nitrc.org/projects/se_linux
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Figure 1. Interpreting Genetic Correlation
Trait pleiotropy, or shared genetic associations, is one of the explanations.
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Figure 2. Principal phenotypic components of subcortical shape
The correlation structure captures the expected local spatial correlation, with the main 

components mainly dominated by a specific region.
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Figure 3. Principal genetic components of subcortical shape
The genetic correlation structure is more complex, with more inter-regional cross-talk.
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Figure 4. Genetic correlation of principal components
Heritability is displayed on the diagonal. Principal genetic components capture more shape 

heritability with minimal redundancy.
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Figure 5. Associations of component coordinates with AD genes PCA vs. Principal Genetic 
Components
Top: log of the smallest p-value for each AD risk gene. Bottom: number of components 

passing Bonferroni correction. The genetic components are able to identify two additional 

genes.
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Table 1
AIC of heritability models

As in figure 4, the table shows that the genetic components better explain shape heritability than standard 

principal components (lower AIC is better).

# of components 2 3 4 5

Genetic PCs 5772 4544 3156 1548

Phenotypic PCs 6146 5330 3398 1724
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