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Abstract

Retinal pigment epithelium (RPE) defects are indicated in many blinding diseases, but have been 

difficult to image. Recently, adaptive optics enhanced indocyanine green (AO-ICG) imaging has 

enabled direct visualization of the RPE mosaic in the living human eye. However, tracking the 

RPE across longitudinal images on the time scale of months presents with unique challenges, such 

as visit-to-visit distortion and changes in image quality. We introduce a coarse-to-fine search 

strategy that identifies paired patterns and measures their changes. First, longitudinal AO-ICG 

image displacements are estimated through graph matching of affine invariant maximal stable 

extremal regions in affine Gaussian scale-space. This initial step provides an automatic means to 

designate the search ranges for finding corresponding patterns. Next, AO-ICG images are 

decomposed into superpixels, simplified to a pictorial structure, and then matched across visits 

using tree-based belief propagation. Results from human subjects in comparison with a validation 

dataset revealed acceptable accuracy levels for the level of changes that are expected in clinical 

data. Application of the proposed framework to images from a diseased eye demonstrates the 

potential clinical utility of this method for longitudinal tracking of the heterogeneous RPE pattern.

Index Terms

Adaptive Optics Retinal Imaging; Pictorial structure; Belief Propagation; Indocyanine Green; 
Superpixel

1. INTRODUCTION

The retinal pigment epithelium (RPE) is an important tissue layer that nourishes and 

maintains retinal visual cells necessary for vision. RPE defects can result in loss of vision in 

disease [1]. Recently, we have shown that adaptive optics enhanced indocyanine green (AO-

ICG) imaging can be used to visualize the RPE cell mosaic in living human eye [2]. The 

RPE mosaic has a heterogeneous appearance consisting of dark, gray, and bright patches 

(Fig. 1). Detection of changes to this underlying pattern can potentially reveal changes to the 

RPE indicating disease progression. This paper aims to develop a computer-aided detection 

framework to identify such changes.

Detection of pattern changes on longitudinal AO-ICG images is challenging for a number of 

reasons. First, variation in image quality or the locations of the imaged areas themselves can 
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occur across a time window of several months. These are exacerbated by local distortions 

due to scanning or eye motion-induced artifacts, and also errors in the registration of 

overlapping images within the same imaging session. Finally, the RPE pattern is often 

degraded by noise. To overcome these challenges, we developed a coarse-to-fine search 

strategy to detect pattern changes. Image displacement is first estimated through graph 

matching of affine invariant maximal stable extremal regions (MSER) [3] in affine Gaussian 

scale-space. Next, patterns are represented as superpixels and then simplified to pictorial 

structures. Constrained by image displacement, local superpixel displacements are estimated 

through a tree-based belief propagation. Finally, these displacements guide superpixel 

pairing, which can be used to measure their pattern changes in longitudinal AO-ICG images.

2. METHODS

2.1 Image Displacement Estimation

The purpose of this step is to estimate image displacements between longitudinal AO-ICG 

images. These displacements are used to initialize the estimation of local pattern 

displacements described in the next section, and to automate the determination of search 

ranges.

AO-ICG images are first smoothed to reduce noise using total variation flow [4]. The MSER 

detector is then used to search for dark and bright regions in the smoothed images (green 

ellipses, Fig. 1). SIFT feature descriptor [5] is employed to describe each MSER, and image 

displacements are estimated by matching feature descriptors. However, it is inaccurate to 

directly establish feature descriptors on MSERs because image distortion often causes the 

same MSER to deform in the AO-ICG image pair, (e.g. Fig. 1, white arrows). To reduce 

image distortion errors, we adapt affine Gaussian scale-space [6,7] to estimate local affinity 

and compute feature descriptors on the affine invariant MSERs.

Let I(p), p = (x, y)T, be an AO-ICG image,

L(p; Φt) = g(p; Φt) ∗ I(p) . (1)

Here, Φt is a symmetric positive semi-definite matrix,

g(p; Φt) = 1
2π detΦt

e
− pTΦt p/2

. (2)

Assuming S(p1) and S(p2) are two corresponding MSERs with A as their affine 

transformation matrix, we can get p2 = Ap1. Supposing Φt,1 and Φt,2 are their affine 

Gaussian scale matrices, then according to affine Gaussian scale-space [6]:

Φt, 1 = ATΦt, 2A . (3)
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To estimate Φt, we apply the second moment matrix M to compute local affinity.

M(p; Φt) = g(p; Φs) ∗ (∇L(p; Φt)) ⋅ (∇L(p; Φt)
T) . (4)

Here, the integration scale matrix is defined as Φs = αΦt where α is a constant. Again, we 

can derive

M2 = A−TM1A−1 . (5)

According to Eq. (3) and (5), we can get Φt = βM−1, where β is a constant. The affine 

transform matrix A can be computed in terms of M,

A = M2
−1/2RM1

1/2 . (6)

R is an orthogonal matrix which includes rotation and mirror transformations. 

Corresponding MSERs can be rewritten as

p2 = M1
−1/2RM1

1/2 p1 M2
1/2 p2 = RM1

1/2 p1 . (7)

It is important that they should contain the same image contents under affine image 

distortion. We can adjust corresponding MSERs as p1 = M1
1/2 p1 and p2 = M2

1/2 p2 because 

corresponding adjusted MSERs only have orthogonal transforms which are affine invariant. 

This allows us to build accurate SIFT feature descriptors on the adjusted MSERs.

Graph matching [8] is used to find affine invariant MSER correspondences. Besides 

similarity values between SIFT feature descriptors, graph matching also combines geometric 

compatibility between MSER correspondences and uniqueness of correspondence into a 

unified framework. Together, these improve the matching in the presence of image 

distortions. Fig. 1 illustrates the final MSER corresponding results (red lines). Image 

displacements can be represented as ℒg = {lg,1, ⋯, lg,m}, where lg,i is the displacement 

vector between i-th corresponding MSERs.

2.2 Superpixel Displacement Computation

Image displacements provide an initial estimation of pattern correspondences in longitudinal 

AO-ICG images. Unfortunately, they often produce inaccurate correspondences due to local 

image distortions, which thereby necessitates a more refined computation of local pattern 

displacements. However, instead of computing all possible point correspondences, we 

introduce a tree-based belief propagation method that utilizes image displacements to 

initialize the search range of pattern correspondences, significantly reducing computational 

cost.
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The heterogeneous pattern can be represented as a collection of smaller regions with 

homogeneous intensity. Homogeneous regions can be extracted using superpixels [9]. 

Estimation of local image displacements can thus be solved via determination of superpixel 

pairings between two images (e.g. Figs 2A and 2B). This problem can again be solved using 

graph matching [8]. However, graph matching used in estimating image displacement 

enforces unique correspondence, and the problem here involves many-to-one superpixel 

correspondence. Instead, we treat this problem as the minimization of pictorial structure 

through belief propagation [10], and use computed superpixel displacements to guide the 

subsequent pairing of superpixels.

Let G = (V, E) be the graph structure in Fig. 2A, and V = {v1, ⋯, vn} their node 

representations, where vi corresponds to i-th superpixel. E includes all adjacent relationships 

between two superpixels in Fig. 2A. A configuration ℒs = {ls,l, ⋯, ls,n} specifies a 

displacement vector for each superpixel vi ∈ V. Superpixel displacement computation can be 

described as:

ℒs = arg min
ℒs

∑vi ∈ V D(ls, i, I) + ∑(vi, v j) ∈ E F(ls, i, ls, j) , (8)

where D (ls,i, I) measures how well the superpixel in Fig. 2A matches Fig. 2B when moved 

by ls,i. To reduce the computational cost, the census transform [11] is used as the similarity 

measurement for D(ls,i, I). F(ls,i, ls,j) = |ls,i − ls,j|2 measures how continuous two 

displacement vectors from adjacent superpixels are with each other.

However, minimizing an arbitrary graph of Eq. (8) is an NP-hard problem. Additionally, the 

continuity assumption is often not fulfilled between adjacent superpixels. We reduce the 

graph structure in Eq. (8) into a minimum-spanning tree [12] (Fig. 2C). The root is 

arbitrarily selected (red circle, Fig. 2C). Weights of the graph structure are census transform 

values because we assume that adjacent superpixels with similar visual appearance are more 

likely to have similar displacement vectors in Fig. 2A.

Dynamic programming is used to efficiently minimize Eq. (8) on the tree structure. Starting 

with a leaf node vj, the matching value of the best displacement vector of ls,j given the 

displacement vector ls,i of its parent node vi is

Y j(ls, i) = min
ls, j

D(ls, j, I) + F(ls, i, ls, j) . (9)

Here, ls,i is initialized by an image displacement vector lg ∈ ℒg in the previous section 

where the MSER is close to the current superpixel. Meanwhile, the search range of ls,j is 

also limited by max(ℒg). Therefore, we can apply image displacements to initialize the 

computation and automate the determination of search ranges. Iteratively, we can compute 

the remaining tree nodes, other than the root.
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Y j(ls, i) = min
ls, r

D(ls, j, I) + F(ls, i, ls, j) + ∑vc ∈ C j
Yc(ls, j) . (10)

Here, the last term is known as we always compute child nodes first. Eventually, we reach 

the root. If all its child nodes are known, we can compute its displacement vector as

l s, r = arg min
ls, r

D(ls, j, I) + ∑vc ∈ C j
Yc(ls, j) . (11)

Starting from the root, we can work reversely to determine the displacement vectors of all 

tree nodes until all leaf nodes are reached by changing the computation from ‘min’ in Eq. (9) 

and (10) to ‘argmin’. Superpixel displacements are illustrated as white arrows in Fig. 2D.

2.3 Determination of Pattern Changes

Each superpixel in the first visit (Fig. 2A) is translated to the second visit through its 

displacement vector. This can cover a set of superpixels in the second visit. We choose the 

one with the largest number of overlapping pixels as its counterpart. The mean intensities m1 

and m2 are computed for the paired superpixels. If m2 > m1 + γ, pattern changes are marked 

as having changed from dark to bright; m2 < m1 − γ, bright to dark; otherwise, stable. Here, 

γ is the sensitivity threshold. Since we are interested in detecting only significant changes 

(e.g. from bright to dark as opposed to from dark to darker, and vice versa), we empirically 

set γ = 80 in this paper.

2.4 Dataset Collection

Research procedures adhered to the tenets of the Declaration of Helsinki and were approved 

by the Institutional Review Board of the National Institutes of Health. Since AO-ICG was 

first introduced in 2016 [2], there is limited AO-ICG data available. To the best of our 

knowledge, we present for the first time longitudinal AO-ICG data in four subjects (3 

healthy, 1 patient with late-onset retinal degeneration). The time between imaging sessions 

was 3–4 months for the healthy subjects and 12 months for the patient. A total of 669 

overlapping small field-of-view videos were recorded in these subjects, corrected for eye 

motion artifacts, and combined to create larger RPE images. We created validation datasets 

from the healthy subjects to evaluate the robustness and accuracy of the detection 

framework. For each subject, we selected two RPE regions (6 regions total). First, for each 

RPE region, we generated an image pair, each with a unique distortion due to eye motion 

(400×400 pixels). Second, for each RPE region, we artificially introduced two types of 

modifications to the pattern: (1) changing intensity values by 150 (0–255 intensity range; 

bright regions were made darker, and dark regions brighter), and (2) inverting the intensities 

(255− I). For the test dataset, we collected image pairs (1000×1000 pixels) in two RPE 

regions for each of the four subjects.

Liu et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. EXPERIMENTAL RESULTS

3.1 Validation Datasets

Detection accuracy was defined as the ratio between total areas of superpixels in the first 

image that successfully paired counterparts in the second image (whether or not a change 

was truly made), divided by the total area of the unchanged image plane. No changes were 

detected across all six image pairs in the case of the first validation dataset, in which the 

only differences between images were different sets of image distortion due to eye motion 

and scanning. This establishes that our approach is robust to local distortion. For the second 

validation dataset, detection accuracies with increasing levels of changes are summarized in 

Table 1 (mean±standard deviation). The detection accuracy is higher in the case of changing 

intensities vs. inverting the values. This is potentially due to the census transform being 

more robust to a constant intensity change than to the inverse change. The overall drop in 

accuracy with increasing area change ratio is likely due to the creation of substantially 

different trees due to splitting or merging of superpixel areas resulting from the two 

operations (change and invert). These results indicate high accuracy for area change ratios 

within 15%. This drop-off in accuracy at larger change ratios is a tradeoff that is needed for 

the gain in computational speeds realized by the simplification of the superpixels to the tree 

structure.

3.2 Test Dataset

For the test dataset, the average computation time was 14.4±2.6 seconds for 1000×1000 

pixel AO-ICG images. As expected, detection results on six images pairs from three healthy 

subjects showed minimal changes across visits (area change ratio of 0.2±0.3%, mean

±standard deviation). Detected changes were typically found near the boundaries of images 

(Fig 3A–C). There were no regions observed with intensity increase in three healthy 

subjects, while intensity decrease was observed in two image pairs. In contrast, several 

changes in the RPE pattern were found in the diseased eye with both intensity increases and 

decreases (Figs. 3D–3F). The overall area change ratio for this patient was 5.2%. Based on 

our validation results, we estimate that our algorithm can detect with high accuracy changes 

to the RPE mosaic when the visit-to-visit area change ratio is within 15%. Therefore, these 

changes are likely to be indicative of disease progression.

4. CONCLUSION AND FUTURE WORK

In this paper, we developed a computer-aided detection framework to identify pattern 

changes in a novel dataset of longitudinal AO-ICG images. This framework was based on a 

coarse-to-fine strategy to estimate image displacement and uses a simple, computationally-

efficient method to determine correspondences between superpixel regions across different 

visits. Our proposed algorithm is robust against local distortions that arise from the 

combination of scanning and eye motion and is accurate for total area changes across visits 

of up to 15%. As expected, evaluation in a test dataset of healthy subjects revealed little to 

no change. Application to two image pairs from a patient revealed a 5.2% change to the RPE 

mosaic across a one-year time window, suggestive of the rate of disease progression.
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The proposed framework sometimes yielded false matches when there was significant local 

image displacement due to errors in registration between overlapping images or degradation 

of image quality in portions of the image, particularly for the patient data. Such detection 

errors could be potentially due to the insufficient discriminative capability of the census 

transform. Further testing on additional patient datasets will help to further improve the 

robustness of this algorithm. In the future, development of a more discriminative feature 

descriptor that is computationally inexpensive will lead to improvements in performance. In 

addition, evaluation of this framework in a larger AO-ICG database with more healthy 

subjects and patients will also be important. All in all, longitudinal evaluation of changes to 

the RPE together with tracking of other retinal neurons [8] may lead to new insights about 

the onset and progression of blinding retinal diseases.
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Figure 1. 
Image displacement computation in a longitudinal AO-ICG image pair by graph matching of 

affine invariant MSER correspondences. Green ellipses: MSERs; yellow +’s, MSER 

centroids; red lines: MSER feature correspondences. Local image distortion is illustrated by 

different ellipse shapes and angles corresponding to the same region (e.g. white arrow). 

Scale bar: 50μm.
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Figure 2. 
Superpixel displacement computation on a longitudinal image pair. Superpixel 

decompositions on the AO-ICG image from the (A) first and (B) second visits; (C) tree 

structure of superpixels from the first visit (red circle, tree root); (D) superpixel 

displacements of the first visit with respect to the second visit (arrows; lengths indicate 

amounts of displacement). Scale bar: 50μm.
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Figure 3. 
Detection results of pattern changes on a healthy subject (top row) and a patient with late-

onset retinal degeneration (bottom row). Left column: AO-ICG images from the first visit; 

center column: the second visit after 3 months (top row) and 12 months (bottom row); right 

column: pattern change maps overlaid with superpixel displacements, where intensity 

increase (red), decrease (blue), and stable (green). Superpixel displacements indicate the 

local region movements between AO-ICG images from the first visit to the second. Three 

regions of pattern changes are highlighted by circles. Scale bar: 50μm.
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