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ABSTRACT

3D-Polarized Light Imaging has become a unique tech-
nique to study the fiber architecture of unstained brain sec-
tions at the meso- and microscale. It exploits the intrinsic
birefringence of nerve fibers which is measured with a cus-
tomized polarimeter in which the brain section is placed on
a tiltable specimen stage. So far, a computationally fast an-
alytical method based on the discrete Fourier transformation
to analyze the data acquired with the tiltable specimen stage
has been used. In this study, we propose a new algorithm
based on a fitting approach which provides an improved sta-
bility against measurement noise resulting in a more realistic
orientation interpretation, in particular for low signals.

For the first time, it is demonstrated how fiber courses at
the boundary of white and grey matter can robustly be recon-
structed with 3D-PLI. This significantly improves the relia-
bility of mapping the cortex based on 3D-PLI data.

Index Terms— Neuroimaging, Fiber Architecture, Mod-
elling

1. INTRODUCTION

The brain’s nerve fiber architecture is a highly complicated
structure consisting of billions of interconnected neurons.
Knowledge about the fiber pathways is key to the understand-
ing of the human connectome. 3D-PLI has established its
role bridging between macro- and microscale with unique
abilities for neuroanatomical studies [1, 2]. It enables the
ex-vivo measurement of unstained histological brain sections
in a customized polarimetric setup revealing fiber tracts at
the µm scale. The physical principle behind 3D-PLI is the
birefringence of myelinated fibers which causes a change of
the polarization of incoming light depending on the spatial
orientation and density of fibers.

While the reconstruction of the in-plane orientation of the
nerve fiber is straight forward, the information about the out-
of-plane orientation is entangled with the local fiber density.
Until now, one analytical approach has been presented to dis-
entangle both parameters from each other [3] which, however
suffers from noise instability.

We aim for an optimization based scheme to reconstruct
fiber orientation and fiber density independently from each
other to ensure a more accurate reconstruction. Our contribu-
tion is the derivation and implementation of the least squares
solver. It is then evaluated on simulated and experimental data
and compared with the analytical approach.

2. 3D-PLI

The optical setup depicted in Fig. 1 consists of an LED light
source emitting unpolarized light which then passes a linear
polarizer, a quarter-wave retarder, a brain section mounted on
a tiltable specimen stage, a second linear polarizer serving as
an analyzer and a camera which acquires images at a pixel
size of 64 × 64 µm2 [2]. The tilting stage enables rotations
around the x- and y-axis of up to τ = ±8◦. The polarizers
and the retarder are rotated simultaneously in steps of 10◦

from 0◦ to 170◦. At each position an image is acquired.
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Fig. 1: Experimental setup [3]

A nerve fiber is modeled as an uniaxial birefringent crys-
tal whose principal axis is oriented along the fiber orientation.
According to this model the measured light intensity in each
pixel yields a sinusoidal profile depending on the rotation an-
gle ρ by

I(ρ, ϕ, α, t) = IT

(
1 + sin(2(ρ− ϕ)) sin

(π
2
t cos(α)2

))
with the transmitted light intensity IT (transmittance), the in-
plane fiber orientation ϕ (direction angle), out-of-plane fiber



orientation α (inclination angle) and the fiber density t (for
readability purposes we denote trel as t and IT as I0

2 in con-
trast to standard 3D-PLI convention) [2]. The 3D-PLI coordi-
nate system is depicted in Fig. 2: the range of the orientation
angles is ϕ ∈ [0, π] and α ∈ [−π2 ,

π
2 ]. The fiber density pa-

rameter t is given by t = 4ts∆n/λ taking into account the
section thickness ts, birefringence ∆n and the illumination
wavelength λ [2].

The established analysis of this profile is a Fourier anal-
ysis resulting in the transmittance IT as the average trans-
mitted light intensity, the direction angle ϕ as the phase
of the sine curve and the relative amplitude of the sine
| sin

(
π
2 t cos(α)2

)
| (retardation).
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α

Fig. 2: 3D-PLI
coordinate system

As t and α are mapped onto one
value, it is impossible to reconstruct
them independently from each other
without further measurement informa-
tion. This is accomplished by means
of the tilting stage: by applying a well-
defined rotation to the specimen, the
intensity profile also changes in a predefined manner. For ev-
ery tilting position (in routine both axes tilt by 8◦ and −8◦ so
the tilting positions ψ = 0◦, 90◦, 180◦, 270◦ are utilized) an
image series is acquired. All images taken with a tilted stage
are registered onto the flat measurement using a projective
linear transformation.

So far, an analytical approach based on a discrete Fourier
transform of the retardation data (DFT algorithm) has been
presented to extract t and α independently from each other
[3]. As very steep fibers (|α| > 80◦) and slightly myelinated
fibers (t < 0.1) cause very low retardation signals, the change
between the retardation value at the different tilting positions
might be challenging to interpret due to measurement noise
if being at the same order of magnitude as the native bire-
fringent signal. Therefore the computationally fast DFT algo-
rithm comes with the drawback of noise instability for these
two cases.

We seek to improve the reconstruction of α and t by not
only exploiting the amplitude of the sine curves, but the whole
sinusoidal profiles. Furthermore, the analytical approach is
replaced by a more robust fitting procedure.

3. LEAST SQUARES SOLVER

We denote the tilting position with the index j and the rota-
tion angle with index i. For every tilting position j the mod-
elled fiber orientation given by ~rj can be calculated by apply-
ing the appropriate rotation on the true orientation vector ~r as
~rj = Rj~r (rotation matrix Rj) yielding tilted direction angles
ϕj and tilted inclination angles αj . Due to refraction at the
brain tissue, the actual angle of the tilted light path through
the tissue is reduced to τint ≈ 5.7◦ for a tilt of the tilting
stage by τ = 8◦. As a consequence of the longer light path

through the tissue the fiber density t has to be adjusted to
tj = t/ cos(τint) [3]. The transition from the planar mea-
surement with the fiber parameters (ϕ, α, t) to the tilted mea-
surements with the tilted fiber parameters (ϕj , αj , tj) results
in a slightly different intensity curve Ij for every tilting posi-
tion.

As the transmittance Ij,T is effected by additional refrac-
tion and absorptions effects in a tilted measurement, we do
not include it in the fitting process. To eliminate its effects on
the evaluation of the fiber orientation we define the normal-
ized light intensity INji

=
Iji
Ij,T
− 1 which is limited to the

range [−1, 1]. For a measurement of NP rotation angles error
propagation results in the following standard deviation σNji

of INji :

σNji =

[
gIji
I2j,T

+
gI2ji

NP I3j,T

] 1
2

with the gain factor g accounting for the level of measurement
noise I ∼ N (I,

√
g · I). In the current setup the gain factor

was experimentally determined to be g = 3 [4].
According to the 3D-PLI model the normalized light intensity
fji is also given by Iji

Ij,T
− 1 yielding

fji(ϕj , αj , dj , ρi) = sin(2(ρi − ϕj)) sin
(π

2
tj cos(αj)

2
)

Similar to minimizing the weighted sum of the squared resid-
uals between one function and data points as in a common
weighted least squares approach, we now seek to minimize
the sum of the squared residuals between fji and the nor-
malized intensities INji

of all tilting positions NT and rota-
tion angles NP weighted by the inverse standard deviation
wji = σ−1

Nji
. The optimization problem can be formulated as

minimizing the following objective function:

χ2 =

NT∑
j=0

NP∑
i=0

((
fji(ϕj , αj , tj , ρi)− INji

)
· wji

)2
subject to ϕ ∈ [0, π], α ∈ [−π2 ,

π
2 ], t ≥ 0. Two problems have

to be solved to find the global minimum: the boundaries of the
parameters and a suitable starting point for the optimizer.

As the direction angle ϕ0 can be directly derived from the
planar measurement, it provides a good starting point for ϕ.
The first guesses for α and t are determined by brute force
minimization of a 6 × 6 grid ([ϕ0, αl, tk], k, l = 1, . . . , 6)
equidistantly spanning the parameter space.

Least-squares solvers capable of dealing with hard bound-
aries are available but in our case a more convenient solution
is to allow all values for the parameters and exploit the sym-
metry of the problem [4]. As f(ϕ, α, t) = −f(ϕ, α,−t),
it is sufficient to take the absolute value of t = |t| in each
optimization iteration. Considering the symmetry of spheri-
cal coordinates, the unbounded orientation given as (ϕu, αu)
can be transformed back into the standard 3D-PLI parameter
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Fig. 3: Example of the fitting procedure. For illustration
issues only two tilting positions are depicted. Fit result:
ϕ = 101◦, α = −60◦, t = 0.5. R2 = 0.97

space by the following transformations:

α =
((
αu +

π

2

)
mod π − π

2

)
sign

(
−
⌊ϕu
π

mod 2
⌋

+
1

2

)
ϕ = ϕu mod π

These transformations have to be applied before calculating f
in each optimization iteration.

With the starting point given by the brute force mini-
mization and the mentioned transformations the Levenberg-
Marquardt algorithm as implemented in scipy [5] is used
to find the global minimum of the objective function. To
reduce the enormous computation time (about 4 core hours
for one human brain section), the algorithm was parallelized
pixelwise and ported to the JURECA system [6]. This newly
developed algorithm is denoted as Robust Orientation Fitting
via Least Squares algorithm (ROFL algorithm). One example
of the fit result for experimental data of one pixel of a human
hemisphere is depicted in Fig. 3: the normalized intensity
curves for the planar measurement and for tilts by τ = 8◦

into the directions ψ = 0◦ and ψ = 180◦ are plotted along
with the fitted intensity curves according to the model.

4. RESULTS

4.1. Simulated data

In order to test the numerical stability against measurement
noise, simulations were carried out. As the inclination angle
is more challenging to reconstruct, the direction angle was
fixed at ϕ = 30◦. Regarding the inclination angle, only posi-
tive inclinations are simulated as the inclination sign does not
effect the reconstruction accuracy. Similar to [3], synthetic
data is generated by specifying a ground truth orientation vec-
tor, rotating it into the 4 tilting directions of the routine mea-
surement and then computing sinus curves for each tilting po-
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Fig. 4: Simulation results. The median reconstruction error
〈β〉 of the ROFL algorithm (red line) and the DFT algorithm
(green line) is plotted against the fiber inclination angle α for
t = 0.5 and t = 0.07 (dashed line)

sition according to the 3D-PLI model for a light intensity IT
of 2500 (a typical intensity for human brain sections) for two
fiber densities: t = 0.07 representing a fiber at the white/gray
matter boundary and t = 0.5 representing a white matter sce-
nario. For both densities fiber orientations with inclinations α
from 1◦, 2◦, . . . , 89◦ were simulated as ground truth orienta-
tion. Each light intensity was distributed according to the dis-
tribution of the current polarimetric setup: I ∼ N (I,

√
3I).

10.000 samples of sinusoidal profiles each were generated to
provide a sufficient statistic.

These sinus profiles were then analyzed with the ROFL
and the DFT algorithm resulting in reconstructed fiber orien-
tations. The reconstruction error was assessed by calculating
the acute angle β between the simulated ground truth orien-
tation and the orientations calculated by the ROFL and the
DFT algorithm. For each combination of t and α the overall
reconstruction accuracy 〈β〉 is then given by the median er-
ror of all 10.000 samples. The results are plotted in Fig. 4:
the ROFL algorithm provides a smaller reconstruction error in
both cases, especially for very flat and very steep fibers. For
very steep fibers, this can be explained by the very low retar-
dation values corrupted by measurement noise. For in-plane
fibers with α ≈ 0◦, the increased error of the DFT algorithm
arises as the retardation gradient with respect to the different
tilting positions yields 0 in this case: ∂ sin δ

∂α

∣∣
α=0◦

= 0.

4.2. Experimental data

The ROFL and DFT algorithms were applied to a series of
236 consecutive coronal sections of a right human hemisphere
(section thickness: 70 µm) which were measured with the
standard measurement protocol of 4 tilting positions. All sec-
tions underwent a registration process to regain a coherent
3D-volume. The fiber orientations were reoriented based on
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Fig. 5: Experimental results. Fiber orientation maps of a stack of 236 registered consecutive coronal sections of a human
hemisphere processed with the ROFL algorithm (left) and the DFT algorithm (right). White line: manual delineation of the
white/gray matter boundary based on the corresponding light transmittance map. Arrows highlight differences between both
maps. Note that line effects in grey matter originate from the registration process and misinterpretations in grey matter

the spatial transformations obtained by the 3D-reconstruction
scheme. The stack of all sections was virtually resliced into
the plane perpendicular to the sectioning plane to highlight
if the obtained orientations are coherent over the whole vol-
ume. One view of this resliced volume is shown in Fig. 5
enabling a comparison between the both algorithms based on
the color coded fiber orientations. The depicted boundary be-
tween white and gray matter was delineated manually.

Both algorithms result in very similar orientations. Mi-
nor differences occur at boundaries between different anatom-
ical regions (arrow 1) and at the boundary between white and
gray matter, where the ROFL algorithm seems to estimate a
smoother and less noisy fiber orientation map than the DFT
algorithm (arrows 2/3). The average mean squared error be-
tween the measured and predicted light intensities of all pixels
is 15% lower for the results of the ROFL algorithm than for
the results of the DFT algorithm.

5. CONCLUSION

We presented a new algorithm based on a weighted least
squares approach for the analysis of 3D-PLI data which pro-
vides a higher reconstruction accuracy on simulated data than
the analytical approach. For the first time, it was demon-
strated how very steep fibers can reliably reconstructed for
high fiber densities in simulated data.

For experimental data, the results of the new approach are
mostly consistent with the analytical approach and might of-
fer deeper insights into gray matter regions. The lower mean
squared error also indicates a better reconstruction of the un-
derlying fiber architecture.

While the simulation results indicate that greater differ-
ences could be expected for fibers oriented perpendicular to
the sectioning plane, no major differences were found in the
experimental data. The explanation for this behavior might be
the partial volume effect: at a voxel size of 64× 64× 70 µm3

many voxels cannot be fully described by only one fiber ori-
entation. As in-plane fibers cause a much higher amplitude in
the measured sinusoidal signal than steep fibers, they are also
preferably reconstructed by the ROFL algorithm in case of a
fiber crossing. As a consequence 3D-PLI is inherently biased

towards in-plane fibers, which needs to be adressed in future
studies.
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