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ABSTRACT

Synchrotron phase nano-CT is a very useful technique for
studying bone diseases, which requires investigating bone at
the cellular level. Nevertheless, imaging biological tissue at
this resolution is challenging due to the very high radiation
dose. Compressed sensing provides a framework that permits
to reconstruct an image from a limited amount of data. The
most promising way to reduce radiation exposure in X-ray
CT is to reduce the number of projections. The aim of this
study is to assess the use of compressed sensing to reduce
dose for synchrotron phase nano-CT for bone applications.
In this paper, we address the tomographic reconstruction step
by posing a total variation problem and solving it with the
Split Bregman formulation. To assess the proposed method
we created different low-dose imaging scenarios by reducing
the number of projections, and tested them on several bone
samples. The proposed method allowed accurate reconstruc-
tion using 1/4th of the projections, preserving bone features,
details, and a high signal to noise ratio.

Index Terms— Synchrotron CT, low-dose, compressed
sensing, split Bregman

1. INTRODUCTION

X-ray CT imaging is a technique of choice to investigate bone
in diseases such as osteoporosis. Bone has a sophisticated hi-
erarchical organization, from the organ scale to the nano scale
and its strength depends on features at all scales [1, 2]. The
feasibility of X-ray techniques to analyze bone tissue at the
cellular scale has been demonstrated by using ptychography
[3], synchrotron micro-CT [4] and phase nano-CT [5]. Nev-
ertheless, imaging biological tissue in 3D at the nano scale
remains very challenging. For instance, bone imaging at a
resolution of 60 nm [5] required acquiring a very large num-
ber of projections and long acquisition times (1.9 hours to
acquire 2999 projections at four focus-to-sample distances),
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which translated in a dose equivalent to 8 · 107 Gy. Expos-
ing the sample to a large radiation dose during multiple hours
can affect the sample creating motion artefacts and compro-
mising resolution and image quality. In addition, access to
synchrotron radiation is limited. Facing these constraints in
dose and acquisition time requires new strategies and algo-
rithms that allow for low-dose nano CT.

Compressed sensing (CS) provides a framework that per-
mits to reconstruct an image from a limited amount of data.
The most promising way to reduce radiation exposure in x-
ray CT is to reduce the number of projections acquired [6,
7, 8]. CS has been used to reduce the number of projections
in micro-CT [9, 10, 11], but only few studies have addressed
synchrotron nano-CT [12, 13].

The goal of this study is to assess the use of compressed
sensing to reduce dose in synchrotron phase nano CT for bone
applications. In this paper, we will only address the tomo-
graphic reconstruction step. To this aim we propose a total
variation problem and solve it using the Split Bregman for-
mulation, which is an efficient formulation for solving L1-
based problems [14, 15]. Similar proximal methods and split-
ting algorithms have been proposed to solve large scale prob-
lems due to their scalability potential [16, 17]. To assess the
proposed method for bone imaging, we created different low-
dose imaging scenarios by reducing the number of projections
and tested it on several bone samples.

2. MATERIAL AND METHODS

2.1. Compressed sensing formulation

CS ensures accurate image reconstruction from undersampled
data under certain conditions [6]. If p represents data corre-
sponding to a low number of projections, R the forward op-
erator equivalent to a slice-by-slice 2D-Radon transform (for
parallel geometry), and f the unknown image that is sparse
under a known transformation Ψ, then f can be recovered by
solving the following convex problem:

min
f
‖Ψf‖1 such that ‖Rf − p‖22 ≤ σ2, (1)

where σ2 accounts for noisy data. In this work we consider
the 2D gradient transform Ψ = ∇ that leads to total variation



functional which isotropic formulation is given by ‖∇f‖1 =√
(∇xf)2 + (∇yf)2.
To solve the problem (1) we use the Split Bregman formu-

lation, which efficiently handles L1-based constrained prob-
lems [14, 15, 18]. The Split Bregman formulation allows to
split L1-norm and L2-norm terms in such a way that they can
both be solved analytically in two separate steps. To allow for
splitting, we include new variables, x and y, and formulate a
new problem that is equivalent to (1):

(fk+1, xk+1, yk+1) = arg min
f,x,y
‖(x, y)‖1 (2)

+
λ

2
‖x−∇xf − bx‖22 +

λ

2
‖y −∇yf − by‖22 (3)

+
µ

2
‖Rf − pk‖22, (4)

pk+1 = pk + p−Rfk+1, (5)

bk+1
x = bkx +∇xf

k+1 − xk+1, (6)

bk+1
y = bky +∇yf

k+1 − yk+1. (7)

Note that now L2 and L1-terms are independent of each
other. The L2 part leads to a linear problem, which is solved
analytically, and L1-parts are given by shrinkage formulae.
For a detail solution we refer to [15, 8]. The resulting recon-
struction algorithm will be referred as TV-SB.

2.2. Data and image analysis

Data were acquired at the European Synchrotron Radiation
Facility (ESRF) on beamline ID16A [19]. Sampled corre-
sponded to bone acquired at different propagation distances.
A phase retrieval step was applied to each data set of four pro-
jections to get a phase map. The set of phase maps retrieved at
each projection angle was then reconstructed by filtered back
projection (FBP) to get the 3D phase image of size 20483 with
a voxel size of 120 nm [20].

The original image had a size of 20483 and occupied 60
GB. In order to assess the algorithm in a wide range of scenar-
ios, we created smaller images by extracting three VOIs from
the volume reconstructed using fully-sampled data. To eval-
uate the method of relevant structures of interest in bone at
the cellular scale, we selected features representative of the
osteo-canalicular system which plays a major role in bone
physiology. The first target represents an osteocyte lacuna,
the osteocyte being the most abundant cells in bone tissue,
the second one represents an osteocyte lacunae including cal-
cium depositium, and the third one targets canaliculi which
are the the small channels connecting the osteocyte lacunae
(target 1 is displayed in figure 1 and targets 2 and 3 are dis-
played in figure 2). For each of these VOIs, the projections
were simulated numerically.

Low-dose scenarios were created by reducing the num-
ber of projections by 1/2, 1/4, 1/7 and 1/10. An acquisition
was considered fully projected when the number of projec-
tions generated was equal to π/2 times the image size.

number of projections 1/2 1/4 1/7 1/10

RMSE (FBP) 6% 7% 9% 11%
PSNR (FBP) 68 67 64 62
SAM (FBP) 5.7 8.4 14.2 18
RMSE (TV-SB) 1% 1% 2% 2%
PSNR (TV-SB) 83 82 79 77
SAM (TV-SB) 1.4 1.7 2 2.5

Table 1. Results using FBP and TV-SB algorithms for 1/2,
1/4, 1/7, and 1/10 of the total number of projections.

2.3. Comparison of methods and assessment of image
quality

FBP and TV-SB algorithms were evaluated in terms of sev-
eral metrics. We used mean squared error (MSE), peak signal
to noise ratio (PSNR) and streak artefact measure (SAM) [8].
In addition, reconstructed images were assessed by visual in-
spection to evaluate the preservation of edges and bone fea-
tures. The edge preservation was displayed by using canny
edge detection. RMSE is given by ‖f − f̂‖/‖f̂‖, where f̂ is
the target image, and PSNR as 10 log10(L2/MSE), where L
is the range of the values of the image pixels. The SAM is
defined as TV (f − f̂) = ‖∇(f − f̂)‖1.

We assessed TV-SB and FBP in all scenarios for target 1.
Then, we selected the achievable dose reduction and evalu-
ated methods on the other two targets 2 and 3.

3. RESULTS

The different metrics for the target 1 are displayed in Table
1. TV-SB presented a RMSE of 2% for 1/10th of the projec-
tions while FBP led to a RMSE of 6% already for one half of
the projections and to 11% for 1/10th of the projections. For
PSNR, good image quality was considered when values were
above 70 dB. While TV-SB had PSNR above 70 for all sce-
narios, FBP presented lower values in all cases. SAM is the
most interesting metric as it measures aliasing artefacts and
fake edges. TV-SB led to low values of SAM across scenar-
ios. On the contrary, FBP led to a value of SAM larger than
5 for half of the projections and to a three-fold increase for
1/10th of the projections.

Visual inspection corroborates these results. Figure 1
shows reconstructed images by using FBP and TV-SB and
their corresponding edges for the different scenarios for tar-
get 1. For half of the projections, FBP presented noise and
artefacts and lost edges with the lowest contrast. TV-SB pre-
served the most relevant details up to 1/4th of the projections
and retained edges with largest contrast for up to 1/10th of
the projections.

Table 2 and Figure 2 show results for reconstructions by
FBP and TV-SB for 1/4th of the projections for all targets.
As in target 1, TV-SB retains image quality and bone details



Fig. 1. First and second rows: Reconstructed images using
FBP and TV-SB, respectively, for data with projections re-
duced by 1/2, 1/4, and 1/10. Third and fourth rows: Edges
corresponding to previous images. We consider here target 1.

Target 1 Target 2 Target 3

RMSE 1% 1% 1%
PSNR 83 80 82
SAM 1.4 2 1.6

Table 2. Results using TV-SB for 1/4th of the total number
of projections and for the three targets.

for these samples.

4. DISCUSSION

We proposed a TV-SB algorithm for low dose synchrotron
phase nano CT and validated it on bone data. The results show
that TV-SB allows accurate reconstruction using up to 1/4th
of the projections and that higher contrasts can be preserved
with 1/10th of the projections. On the contrary, traditional
FBP reconstruction presented noise, blurred edges and details
already when using half of the projections.

The total amount of dose that can be reduced with the
proposed method depends on the criterion selected for image
quality. For bone imaging, post-processing requires bone de-
tails and low contrast details to be preserved. Here, we found

Fig. 2. Reference image and reconstructed images with FBP
and TV-SB for 1/4th of the projections for targets 2 and 3.

that the compressed method could allow a four-fold reduction
in the number of projections. This could translate to a four-
fold reduction in dose and a significant decrease in acquisition
time, which is crucial given the limited access to synchrotron
beam time. In addition, decreasing acquisition time has the
potential to reduce motion artefacts, which limits resolution
and image quality.

In this work we investigated low-dose protocols using
compressed sensing. However, this work is subject to few
limitations. The methods were assessed on small numeri-
cal phantoms since evaluation of the real data set (60 GB)
was unfeasible with the current version of the algorithm, due
to extended computation times. Future work will address
implementation of the proposed algorithm on a cluster, ex-
ploiting efficient projection and retroprojection operators that
have been developed for ESRF data [21]. Similar proximal
methods and splitting algorithms have been proposed to solve
large scale problems because of their scalability potential
[16, 17]. In addition, reducing the number of projections
would lead to reduced computation times. In this work we
reached a four-fold reduction in the number of projections
using TV-SB, but larger reduction could be obtained by using
a higher order total variation method [22] or another sparsity
promoting functional.
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