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ABSTRACT

Cell detection and counting in the image-based ELISPOT
and Fluorospot immunoassays is considered a bottleneck.
The task has remained hard to automatize, and biomedical
researchers often have to rely on results that are not accurate.
Previously proposed solutions are heuristic, and data-based
solutions are subject to a lack of objective ground truth data.
In this paper, we analyze a partial differential equations
model for ELISPOT, Fluorospot, and assays of similar de-
sign. This leads us to a mathematical observation model for
the images generated by these assays. We use this model to
motivate a methodology for cell detection. Finally, we pro-
vide a real-data example that suggests that this cell detection
methodology and a human expert perform comparably.

Index Terms— Inverse problems, Optimization, Source
localization, Immunoassays

1. INTRODUCTION

In this paper, we use a well-known physical partial differ-
ential equations (PDE) model [1–5] to obtain an observation
model [6, 7] that contributes to the analysis and synthesis of
data from image-based immunoassays such as ELISPOT [8]
and Fluorospot [9]. These immunoassays are relevant to phar-
macological development and medical research [10, 11], and
can even be used to diagnose certain diseases [12, 13].

The data that result from the considered immunoassays
are noisy images containing spots of different shapes and
sizes, which may overlap and occlude each other (see Fig. 1
for an example section). From a biological perspective, the
most relevant information in these images is the number of
spots they contain and their precise location. The former is
used to establish which proportion of the cells involved in an
experiment secreted a substance of interest, while the latter
is used to correlate this information with parallel assays for
some other substance on the same cell population (multiplex
assays). For example, in [10], a Fluorospot assay was run
for the cytokines IFN-γ, IL-17A and IL-22 to determine the
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proportion of human peripheral blood mononuclear cells that
generated one, two or all of these substances under the effect
of a specific antigen.

In conclusion, accurate detection and localization of the
spots in these images is critical to the validity of the results
and conclusions extracted from these assays, even more so in
the case of multiplex assays. However, approaches to spot
detection generally rely on heuristic methods to find dot-like
shapes combined with generic methodologies to address mea-
surement noise [14, 15]. In this paper, we use the aforemen-
tioned PDE model to obtain an observation model for the re-
sulting images, and, through it, a well-founded methodology
for cell detection.

2. FROM PDE TO IMAGING

The spots in the considered images are the result of parti-
cles generated by cells (reaction) during a time window [0, T ].
These cells (hereon, active cells) are immobilized at the bot-
tom of a well, i.e. on the plane z = 0. The particles they
generate undergo a Brownian motion through a medium (dif-
fusion), modeled here by the half-space z ≥ 0. When these
particles collide with the plane z = 0, they can bind to an
even coat of receptors that covers it (adsorption), and after
some time, they can break the bond and continue their mo-
tion (desorption). At time T , the experiment finishes and the
density of bound particles is imaged. Fig. 1 exemplifies this
physical model at a particle level and exhibits a section of a
real image from a Fluorospot immunoassay.

From a macroscopic point of view, this model can be ex-
pressed in terms of the time-varying concentration of particles
that move freely in z > 0, i.e., c(x, y, z, t) ≥ 0 [m−3]. This
density follows the diffusion equation

∂

∂t
c = D

(
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2

)
, (1a)

subject to boundary conditions at z = 0 that express reac-
tion, adsorption and desorption. These boundary conditions
couple c(x, y, z, t) to the surface density of bound particles at
time t, i.e., d(x, y, t) ≥ 0 [m−2], and the source density rate
(SDR) of new particles generated by cells residing at surface
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(a) Particles’ motion model (b) Typical observation

Fig. 1. (a) Visualization, at a particle level, of the proposed physical data model. Three particles, each secreted by a different cell (dark gray)
immobilized on the plane (light gray), follow a Brownian motion. When they hit the plane, they might bind to it (adsorption; black marks).
After a time, they may disassociate (desorption) and continue their Brownian motion. At the end of the experiment, i.e., at time T , they may
be free (blue dots) and thus not imaged, or bound to the surface (red dot) and thus contribute to the final image. (b) Example section of an
image observation from a Fluorospot assay. FITC dye, marking IFN-γ molecules, emitting 512 nm fluorescence. Image captured by an RGB
camera.

locations, i.e., s(x, y, t) ≥ 0 [m−2s−1], through [5]

∂

∂t
d = κac

∣∣
z=0
− κdd , (1b)

and
−D ∂

∂z
c
∣∣
z=0

= s+ κdd− κac
∣∣
z=0

. (1c)

Here, κa [ms−1], κd [s−1], and D [m2s−1] are physical pa-
rameters characterizing the surface’s adsorption and desorp-
tion rates and the medium’s diffusion constant, respectively.
More on the generality and assumptions of this model can
be found in [1–6]. Note that s(x, y, t) is spatially sharp and
sparse, because particles are only released from locations oc-
cupied by cells, but also temporally continuous, because cells
are immobilized throughout the experiment.

In [6], we prove that the luminosity function of the cap-
tured image, i.e., the observation dobs(x, y), can be expressed
up to a constant of proportionality as

dobs(x, y) = d(x, y, T ) =

∫ σmax

0

gσ(x, y) ∗ a(x, y, σ)dσ, (2)

where gσ is a 2D isotropic Gaussian kernel of standard varia-
tion σ, σmax =

√
2DT and ∗ represents spatial convolution.

a(x, y, σ) ≥ 0 for σ ≥ 0 is a new quantity that we name
post adsorption-desorption source density rate (PSDR), and
that can be expressed as

a(x, y, σ) =
σ

D

∫ T

σ2

2D

s(x, y, T − η)ϕ

(
σ2

2D
, η

)
dη . (3)

The PSDR expresses an equivalent SDR where the effect of
adsorption and desorption has been summarized. Moreover,
the PSDR is expressed as a function of the length σ each of
the particles has traveled from the site they were released, as
opposed to the SDR, which is a function of the time at which
each particle was released. In [7], we prove that ϕ(τ, t) in (3)
is given by

ϕ(τ, t) = i[0,t)(τ)

∞∑
j=1

φj∗(τ)p [j − 1;κd(t− τ)] , (4)

for 0 ≤ τ ≤ t, ∀t ≤ T . This function expresses the prob-
abilistic relation between the total time in free motion τ and
the time t at which a particle is found bound. In (4), we have
that p[j;λ] is the probability mass function of a Poisson ran-
dom variable with mean λ ≥ 0 evaluated at j ∈ N, i[0,t)(τ) is
the (0, 1)-indicator function of the set [0, t),

φ(τ) =
κa√
πDτ

− κ2a
D

erfcx

(
κa

√
τ

D

)
,

and φj∗(τ) = (

j︷ ︸︸ ︷
φ ∗ · · · ∗ φ)(τ) is φ’s j-th convolutional prod-

uct. Here, erfcx(x) is the scaled-complementary error func-
tion. For more on the generality of this observation model
and how it is affected by hardware impairments such as opti-
cal blur or additive noise, see [7].

For the purpose of cell detection, it is relevant to note
that a(x, y, σ) contains the same spatial information that
s(x, y, t) does, because the operation to obtain a(x, y, σ)
from s(x.y, t) (3) is only a convolution in the temporal di-
mension, which leaves spatial dependence unchanged. Con-
sequently, a(x, y, σ) is also spatially sharp and sparse, indi-
cating where active cells lie. Inverting (2) to obtain the PSDR,
then, is a reasonable procedure for cell detection. Moreover,
recovering the PSDR also provides a representation of the
amount of particles released from each cell location. For
the purpose of understanding spot formation, one can simply
picture the response of the observation model (2) to a spa-
tially sharp, temporally continuous s(x, y, t). This reveals
that spots that are generated by active cells will always be
monotone and circularly invariant. For the purpose of syn-
thetic data generation, note that (2), (3) and (4) provide all
the information needed to generate a synthetic image obser-
vation from an arbitrary SDR s(x, y, t) and some physical
parameters κa, κd, D and T .

In conclusion, the novel observation model (2) allows for
a new understanding of the spot formation process, but also
provides natural analysis and synthesis strategies.



Require: An initial ã(0) ∈ T (M,N,K), a discrete image observa-
tion d̃obs ∈ T (M,N)

1: b̃(0) ← ã(0), i← 0
2: repeat
3: i← i+ 1

4: d̃(i) ←
K∑

k=1

g̃k ~ b̃
(i−1)
k − d̃obs

5: for k = 1 to K do

6: ã
(i)
k ←

[
b̃
(i−1)
k − ηg̃k ~

[
w̃2 � d̃(i)

]]
+

7: end for

8: p̃←

1− η

2
λ


√√√√ K∑

k=1

(
ã
(i)
k

)2−1


+

9: for k = 1 to K do
10: ã

(i)
k ← p̃� ã(i)k

11: end for

12: b̃(i) ← ã(i) + α(i)
(
ã(i) − ã(i−1)

)
13: until convergence
14: ãopt ← ã(i)

Fig. 2. APG algorithm to obtain ã. Lines 4 and 6 optimize
the data fidelity term, while Lines 8 and 10 optimize the regu-
larizer. The sequence α(i) can be that in [16] or that in [17],
η = σ̃−1

max/max |w̃m,n|2 is the algorithm’s fixed step size, ~ repre-
sents discrete size-preserving zero-padded convolution, and matrix
products (�) and powers are element-wise.

3. METHODOLOGY

3.1. Inverse Problem

In [6], we derive a procedure for inverting the observation
model (2) in function spaces by using group-sparsity regu-
larization and the accelerated proximal gradient (APG) algo-
rithm (also known as FISTA). In [7], we propose a discretiza-
tion and approximation of that algorithm. This discretized al-
gorithm obtains a discrete approximation ã ∈ T+ (M,N,K)
of a(x, y, σ) ≥ 0 in (3) from a discrete image observation
d̃obs ∈ T+ (M,N). Here, T+ (q1, q2, . . . , qQ) is the space of
element-wise non-negative tensors (or matrices) of dimension
q1×q2×· · ·×qQ, M and N are the number of pixels in each
spatial direction, and K is the number of discretization points
used for the σ-dimension.

Fig. 2 specifies a simplified case of this discrete algo-
rithm. The g̃ks are discrete rank-1 convolutional kernels
formed by approximating finite integrals of Gaussian func-
tions with respect to their standard deviation and spatial
coordinates (see gb1rk in [7] for details), and the ãks are cuts
of ã in the k-dimension, i.e. ãk ∈ T+ (M,N). More-
over, σ̃max = σmax/∆pix, where ∆pix is the length of a
pixel’s side, and w̃ ∈ T+ (M,N) and λ ≥ 0 are user pa-
rameters. In particular, the algorithm in Fig. 2 solves the

finite-dimensional optimization problem

min
ã


∥∥∥∥∥w̃ �

(
d̃obs−

K∑
k=1

g̃k ~ ãk

)∥∥∥∥∥
2

2

+λ
∑
m,n

‖ãm,n‖2


(5)

subject to ã ∈ T+ (M,N,K), where the ãm,ns are cuts of ã
in the spatial dimensions, i.e. ãm,n ∈ RK . This optimiza-
tion problem can be proven to approximate the one proposed
in [6]. The first term in (5) is a weighted norm used as a data-
fidelity cost function with respect to a discretization of the
observation model (2). The second term in (5) is a regular-
izer that promotes both spatial sparsity and continuity through
the ks, i.e., a group-sparsity regularizer that induces a group
behavior [18] for all the components in ã representing a cer-
tain location. The effect of this regularizer is tweaked by the
regularization parameter λ, which is set larger (or lower) to
increase (or decrease) selectivity.

3.2. Detection and performance evaluation

In the context of image-based immunoassays, a cell detec-
tor generally provides tuples {(rl, pl)}Ll=1, where rl ∈ R2

+

is a position in pixel-based coordinates and pl ≥ 0 is a non-
negative number proportional to the confidence assigned to
the specific detection, i.e. a pseudo-likelihood. This is done
so that researchers can threshold detections by the pseudo-
likelihood to match their criteria.

In our specific case, we use the estimated discrete PSDR
ã obtained from the algorithm in Fig. 2 to build an image
p̃ =

√∑
k ã

2
k. Then, we consider the pixel positions of its

regional maxima as detections, and the pixel values at those
positions as the respective pseudo-likelihoods. This specific
p̃ expresses the importance of each detection with respect to
the group-sparsity regularizer in (5).

To evaluate the performance of our detector when ground-
truth data is available, we pick the threshold for the pseudo-
likelihoods pl that yields the best F1-score given the ground-
truth data. In this manner, we hope to emulate the threshold
the human expert would have chosen. The F1-score is a num-
ber in the range [0, 1] that expresses a compromise between
precision and recall, i.e.,

pre =
TP

TP + FP
, rec =

TP

TP + FN
, and F1 =

2 pre · rec

pre + rec
,

with TP, FP and FN the numbers of true and false posi-
tives and false negatives, respectively. These quantities are
obtained by matching the detections to ground-truth cell po-
sitions in decreasing order of pseudo-likelihood with a toler-
ance of 3 pixels.

4. REAL-DATA EXAMPLE

We analyzed a real Fluorospot image for which human ex-
pert labeling was available. This image was obtained by us-



Fig. 3. To the left, grayscale image representation of the data, with increased luminosity. To the right, cell detection results
(yellow circles) and human expert labeling (orange squares) for a specific section.

ing FITC dye as a marker for some relevant analyte, and was
captured by an RGB sensor that yielded a 2048 × 2048 raw
image with a dynamic range of 16 bits. The data was sub-
ject to a Bayer filter, i.e., neighboring pixels exhibited dif-
ferent sensitivities to light intensity at the FITC wavelength
(512 nm). To compensate this difference, we weighted each
pixel correspondingly to estimate the luminosity, and used w̃
to weight the prediction error at each pixel according to its
sensitivity. Furthermore, we selected the area that comprised
the well manually, and fixed w̃ = 0 for all points outside it.

We used the algorithm in Fig. 2 with M = N = 2048,
K = 6, λ = 4000 and the sequence α(i) proposed in
[16]. The underlying parameters σk (see [7]) were set to
{2, 15, 20, 30, 40, 50, 70}. We run the algorithm for 10000
iterations, which were more than those needed for conver-
gence. The resulting F1-Score was 0.9 with precision 0.92
and recall 0.88. On the left panel of Figure 3, we show a
grayscale representation of the image under study, while on
the right panel, we show both the detections proposed by the
human expert (orange squares) and the ones proposed by our
algorithm (yellow circles), on a specific section of the image.

In our opinion, both sets of detections are of comparable
quality, with our algorithm being more precise in terms of
cell locations and the human labeler obtaining higher recall
for isolated cells. However, one has to take into account that
the detections obtained by our algorithm have been thresh-
olded to match the criteria of this specific expert, and thus,
the absence of weaker spots in the set of detections can be

explained by inconsistent inclusion criteria in the human la-
beling. A final relevant difference between the two sets of
detections is that our algorithm uses the observation model to
evaluate the whole shape of spots in terms of possible cells,
instead of mainly relying on local luminosity. Hence, the al-
gorithm includes detections that are weaker but fit the shape
of cell-generated spots, as the apparent false positive in the
middle-right region of the image. This also results in the cor-
rect decomposition of clusters of cells, as it is clearly the case
of the large spot in the upper-right region of the image.

The results reported here are coherent with the extensive
quantitative study on synthetic data we present in [7], which
additionally suggests robustness both to additive noise and to
changes in the regularization parameter λ, as well as domi-
nance over simpler deconvolution approaches.

5. CONCLUSIONS

In this paper, we have analyzed the PDE behind some image-
based immunoassays, i.e. a reaction-diffusion-adsorption-
desorption equation. From this analysis, we have obtained
a novel observation model for these assays. Then, we have
presented the insights on the process of spot formation this
observation model entails, and we have used them to propose
a novel analysis algorithm. Finally, we have exemplified the
use of this algorithm on real data, obtaining results that are
quantitatively close and qualitatively comparable to those
generated by a human expert.
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