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Abstract

In vivo cardiac microstructure acquired using cardiac diffusion tensor imaging (cDTI) is a critical 

component of patient-specific models of cardiac electrophysiology and mechanics. In order to 

limit bulk motion artifacts and acquisition time, cDTI microstructural data is acquired at a single 

cardiac phase necessitating registration to the reference configuration on which the patient-specific 

computational models are based. Herein, we propose a method to register subject-specific 

microstructural data to an arbitrary cardiac phase using measured cardiac displacements. We 

validate our approach using a subject-specific computational phantom based on data from human 

subjects. Compared to a geometry-based non-rigid registration method, the displacement-based 

registration leads to improved accuracy (less than 1° versus 10° average median error in 

cardiomyocyte angular differences) and tighter confidence interval (3° versus 65° average upper 

limit of the 95% confidence interval).
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1. INTRODUCTION

Cardiac diffusion tensor imaging (cDTI) is a magnetic resonance imaging (MRI) technique 

that non-invasively measures the self-diffusion tensor of water in the in vivo beating heart 

and provides substantial quantitative insight to the heart’s microstructural organization. 

cDTI measures a symmetric rank-2 diffusion tensor (D) from which an eigensystem 

decomposition produces three (i = [1, 2, 3]) preferential directions (eigenvectors, e⃗i) and 

corresponding rates of diffusion (eigenvalues, λi). The correspondence of e⃗i to the 

microstructural axes of the myocardium has been confirmed by histology [1]. In particular, 

e⃗1 corresponds to the local cardiomyocyte orientation, e⃗2 corresponds to the within-sheet 

cross-fiber direction, and e⃗3 corresponds to the sheet-normal direction.

The emergence of in vivo cDTI has already shown significant clinical value in characterizing 

pathological changes in cardiac microstructure [2, 3]. In addition, in vivo cDTI can now be 
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used to provide patient-specific microstructural data to anchor evaluation of cardiac function 

[4] and electrophysiology [5].

Current in vivo cDTI methods, however, typically acquire data at a single cardiac phase due 

to: 1) the long scan times (~2–5 minutes for single-phase and single-slice); and 2) the 

susceptibility to bulk motion signal corruption during some cardiac phases [6, 7]. The cDTI 

imaging phase is chosen primarily to obtain the optimal in vivo cDTI data quality, but this 

cardiac phase does not necessarily correspond to the reference configuration from which 

patient-specific computational mechanics and electrophysiology models are built. Therefore, 

the measured microstructural data (e.g., e⃗1) need to be registered to the models’ reference 

configuration.

The preferred method for registering cardiac microstructure from one cardiac phase (e.g., 

mid-systolic imaging phase) to another phase (e.g., end-diastolic reference configuration) is 

not currently established. Current diffusion tensor registration techniques have been 

primarily developed in the context of co-registering static brain tissue from different datasets 

[8]. Consequently, the established techniques are concerned with registering corresponding 

features in each image and do not necessarily incorporate all components of in vivo tissue 

motion. It remains unclear whether traditional feature-based, non-rigid (NR) tensor 

registration accurately reorients through-phase cDTI cardiomyocyte orientations in the 

beating heart. Our goal was to define a framework for using time resolved cardiac 

displacements acquired using Displacement ENcoding with Stimulated Echoes (DENSE) [9] 

to register cardiomyocyte orientation vectors (e⃗1) at different cardiac phases.

Herein, the proposed displacement-based registration technique was validated against 

ground truth in vivo cDTI data deformed using a computational phantom that was designed 

to reproduce previously reported cardiac motion and the corresponding cardiomyocyte 

kinematics. To quantify the benefit of a tissue displacement-based approach, we compare its 

accuracy and precision with an NR tensor registration algorithm based on the left ventricle 

short axis geometry imaged at each cardiac phase.

2. METHODS

Cardiomyocyte orientations at mid-systole were obtained using in vivo cDTI and re-oriented 

through the cardiac cycle using a left ventricular computational phantom (LVCP). Since 

multi-phase cDTI is not currently feasible due to motion corruption and prolonged scan 

times, the LVCP displacements and cardiomyocyte kinematics were used as ground truth to 

evaluate the accuracy and precision of the displacement-based registration (Fig. 1). Results 

were compared to an existing NR geometry-based registration technique.

2.1. Image Acquisition

Healthy human subjects (N = 3) were imaged after obtaining informed consent under an IRB 

approved protocol. Mid-ventricular short-axis cDTI and DENSE MRI data were acquired at 

3T (Prisma, Siemens). All data acquisition used navigator triggered free breathing. cDTI 

was acquired at mid-systole using CODE [6] cDTI: 2×2×5 mm, TE/TR = 74/4000 ms, b-

value = 0, 350 s/mm2, Navg = 10, Ndir = 12, Tscan = 4 min. DENSE was acquired at ≈ 60 
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cardiac phases (15 ms view shared temporal resolution): balanced 4-point encoding in x, y, 

z, spatial resolution 2.5×2.5×8 mm, TE/TR = 1.04/15, ke = 0.06 cycles/mm, Navg = 3, spiral 

interleaves = 10, Tscan ≈ 5 min. DENSE images were acquired at the location of the cDTI 

slice, 8 mm above it, and 8 mm below it.

2.2. Left Ventricular Computational Phantom (LVCP)

A subject-specific LVCP was constructed to evaluate the displacement-based and NR 

registration approaches. Using the tool described in Spottiswoode et al. [10], three mid-

ventricular short axis DENSE magnitude images were segmented and the resulting 

endocardial and epicardial splines were interpolated with a surface. The enclosed volume 

was meshed with linear hexahedral finite elements and a boundary value problem was 

solved to simulate the motion from mid-systole (MS) to end diastole (ED) (Fig. 1, middle). 

The LVCP boundary value problem enforces quasi-incompressibility of the myocardium and 

aims to achieve preset realistic target strains in the longitudinal and fiber directions. The 

magnitude of the target cardiac strains was imposed based on the separation between the MS 

phase where cDTI was acquired and the phase where myofiber orientations were registered 

(i.e., ED). To ensure that the LVCP exhibited realistic cardiac motion, we computed strains 

measured along the longitudinal (ELL), circumferential (ECC), and radial (ERR) directions 

from MS to ED in each subject-specific model (Table 1). Note that positive ELL, positive 

ECC, and negative ERR correspond to LV filling from MS to ED. Moreover, the strain values 

are different among volunteers since microstructural data, LV geometry, heart rate – and 

therefore the relative cardiac phase where cDTI is acquired – are subject-specific.

Cardiomyocyte orientations were incorporated into the model by interpolating the in vivo 
cDTI data to the quadrature points of the LVCP mesh using a linear tensor interpolation 

scheme [11]. Subsequently, based on the LVCP deformation mapping, the cardiomyocyte 

orientations computed from in vivo cDTI data were mapped to obtain ground truth 

cardiomyocyte orientations at each simulated cardiac phase.

2.3. Displacement-based Registration

DENSE images acquired above and below the cDTI slice provide 3D Lagrangian 

displacements ui along the X1, X2, and X3 directions. We use the LVCP to mimic the 

DENSE displacements and compute ground-truth ui at the location of the finite element 

nodes a (Fig. 2, top). In our tests, we assumed that the nodes where displacements are known 

were located at 8mm (as in the current imaging protocol) and at 4mm (simulating DENSE 

and cDTI staggered images) distance from the cDTI slice location. We interpolated ui using 

the mesh-free Local Maximum-Entropy (LME) interpolation scheme [12] and computed the 

local deformation gradient F at the location Xc as:

FiJ(Xc) = ∑
a = 1

n
Na, J(Xc)φai, (1)

where FiJ is the (iJ) component of F, n is the number of nodes at which displacements are 

known inside a search radius r from Xc, Na is the LME shape function corresponding to 
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node a, Na, J(Xc) is the derivative of Na in the J direction evaluated at Xc, and φai is the 

component i of the current location of node a. The search radius r at each location Xc is 

chosen so that n ≥ 20. This guarantees the successful calculation of Na in more than 80% of 

the cases. At the locations Xc where calculation of Na fails, we compute F(Xc) using a 

central finite difference scheme and linear displacement interpolation. Using F(Xc), we 

compute the new direction e⃗1disp along which the cardiomyocyte at Xc is reoriented as:

e 1
disp = F(Xc) e 1, (2)

where e⃗1 represent the original direction of the cardiomyocyte (Fig. 2, bottom). Finally e⃗1disp 

from eq. (2) is renormalized to be a unit vector.

2.4. Geometry-Based Non-Rigid Registration

The cDTI data acquired at MS were rotated and translated such that the RV insertion points 

matched the heart’s configuration in the DENSE image at MS from which the LVCP is built. 

The tensors were reoriented using the rotation extracted from the computed affine 

transformation. Once the cDTI heart was aligned with the DENSE configuration at MS, the 

LV in the cDTI image was segmented and converted to a binary mask. The cDTI LV mask 

was then elastically deformed using the B-spline registration outlined in Rueckert et al. [13] 

to match the target DENSE LV masks at each cardiac phase (Fig. 3, top). The binary masks 

were used to characterize the deformation of the LV from MS to ED as the target for the NR 

registration. The registration computed from the cDTI and DENSE masks was applied to 

each diffusion weighted image, thereby deforming the MS cDTI LV data to match the 

DENSE LV geometry at the chosen cardiac phase (Fig. 3, bottom). Cardiomyocyte 

orientations e⃗1NR were subsequently computed via eigensystem decomposition of the non-

rigidly registered diffusion tensors.

3. RESULTS

Median angular differences between ground truth and registered cardiomyocytes are smaller 

if computed using the displacement-based versus the NR approach (average 1° versus 10°). 

However, both methods result in median angular differences inside the CODE cDTI cone of 

uncertainty [14] (Fig. 4). Pointwise comparison of the angular differences presents a larger 

error and a larger confidence interval (CI) if geometry-based NR registration is applied (Fig. 

4). The upper limit of the angular difference 95% CI is significantly reduced (average 3° 

versus 65°) when registration is carried out using the displacement-based versus the 

geometry-based NR registration (Table 2).

4. DISCUSSION

The proposed displacement-based registration outperforms the geometry-based NR 

registration in terms of cardiomyocyte angle accuracy and precision (significantly tighter 

95% CI). Improved accuracy and precision may result from the displacement-based 

approach incorporating all components of cardiac motion – including through plane 
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components –whereas the geometry-based NR registration technique does not account for 

longitudinal motion and shear strains due to intra-slice torsion. Furthermore, the geometry-

based NR registration is applied directly to the diffusion weighted images and it remains 

unclear how this transformation affects the recomputed diffusion tensors.

Knowing the displacement field at 4mm spacing above and below the cDTI slice and not at 

8mm improved accuracy and precision (see Fig. 4 and Table 2). This suggests an adjustment 

of the imaging protocol: instead of acquiring cDTI and DENSE images at the same 

locations, cDTI and DENSE images should be interleaved so that their effective distance is 

half the chosen slice thickness of 8mm.

The error resulting from the geometry-based NR registration is significant across the 

myocardium. On the contrary, the error computed using the displacement-based method is 

generally small, except for a limited number of points close to the slice boundaries. The 

higher error close to the boundaries is likely due to failure of LME shape function to 

converge and may be addressed with more sophisticated solvers.

The baseline NR registration technique used in this study can be improved to further 

examine the benefits and drawbacks of a displacement-based approach. Since the healthy LV 

has a regular annular shape with few tissue heterogeneities, the binary masks of the 

segmented LV serve as a basic feature tracking registration strategy. A technique that 

incorporates more features into the algorithm (e.g., papillary muscles, right ventricle 

insertion points, trabeculae) can be used in future work to improve the NR registration 

accuracy in capturing myocardial motion.

Our geometry-based NR registration pipeline recomputes D after the applied NR 

deformation. This results in deforming the domain in which the diffusion tensors are 

interpolated and in changing the diffusion tensors themselves since the pixel intensity of the 

registered images is affected by the registration. As a result, the NR algorithm does not 

accurately rotate D according to the in-plane shearing and stretching. Although the effect 

from this rotation may be small, other tensor reorientation strategies need to be examined in 

future work as, for example, the finite strain and preservation of principal direction 

approaches outlined in Alexander et al. [8].

One of the limitations of the displacement-based approach is the requirement of DENSE 

images that, if not already acquired for other purposes, will result in longer imaging 

protocols. Furthermore, the presented approach registers and reorients the cardiomyocytes 

through the cardiac cycle based on displacement derivatives, i.e., F. In presence of noise, the 

error in the displacement field may be amplified by calculating F. Although the diffuse 

domain of the LME shape functions may limit noise amplification, this aspect needs to be 

carefully investigated in future work.

This work demonstrates an initial validation of a displacement based registration pipeline for 

cDTI using computationally derived cardiac kinematics. Based on the proposed approach, 

accurate time resolved cardiomyocyte orientations in the beating heart can be computed 

from cDTI acquired at a single cardiac phase using displacement encoded MRI. The 

framework can be expanded to reorient the within-sheet cross-fiber directions (e⃗2) and sheet-
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normal directions (e⃗3) throughout the cardiac cycle as well. When used entirely with 

experimental functional and microstructural MRI data, the proposed framework also has the 

potential to reveal insights into microstructural mechanisms of cardiac dysfunction.
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Fig. 1. 
Pipeline. In vivo cDTI-based cardiomyocyte orientations are deformed using the LVCP to 

obtain ground truth displacements and cardiomyocyte orientation e⃗1GT at different cardiac 

phases (center). Displacement-based (top, see also Fig. 2) and geometry-based NR (bottom, 

see also Fig. 3) methods are applied to compute registered cardiomyocyte orientation e ⃗1 disp 

and e⃗1NR, respectively. Angle differences between (e⃗1GT, e⃗1 disp) and (e⃗1GT, e⃗1NR) are 

computed to evaluate accuracy and precision.
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Fig. 2. 
Displacement-based registration. The deformation mapping φdisp at each red point above and 

below the cDTI slice measures the motion between the cDTI acquisition phase (e.g., MS) 

and the target cardiac phase (e.g., ED). The corresponding deformation gradient F(eq. 1) is 

used to register the cardiomyocyte orientation vectors e⃗1 (eq. 2).
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Fig. 3. 
Geometry-based NR registration. The deformation mapping φNR is computed to transform 

the cDTI binary mask to the target cardiac phase. φNR is then applied to each diffusion 

weighted image and registered cardiomyocyte orientations are recomputed from the non-

rigidly registered tensors.
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Fig. 4. 
Angular differences between ground truth and registered (MS mapped to ED) cardiomyocyte 

orientation using displacement-based and NR approaches in subject-specific computational 

phantoms based on N = 3 volunteers. Left: median (square markers) and 95% CI (horizontal 

tick marks). The dashed line corresponds to the CODE cDTI cone of uncertainty [14]. Right: 

pointwise registration error at ED.
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Table 1

Target LVCP longitudinal, circumferential, and radial strains (mean ± standard deviation) from MS back to ED 

for volunteers 1, 2, and 3.

ELL ECC ERR

S-1 0.10 ± 0.001 0.06 ± 0.02 −0.12 ± 0.01

S-2 0.17 ± 0.002 0.07 ± 0.03 −0.15 ± 0.02

S-3 0.18 ± 0.003 0.11 ± 0.05 −0.17 ± 0.02
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Table 2

Median and, in parenthesis, 95% CI of cardiomyocyte angle difference for displacement (φdisp) and geometry-

based NR (φNR) registration from MS to ED. φdisp median and 95% CI are reported with displacement 

information at 8mm and 4mm from cDTI slice.

φdisp
φNR

8 mm 4 mm

S-1 0.4° (0.1°–1.7°) 0.3° (0.1°–0.8°) 8.8° (1.4°–55.7°)

S-2 0.8° (0.1°–2.9°) 0.4° (0.1°–1.6°) 11.0° (1.6°–73.2°)

S-3 1.0° (0.1°–9.7°) 0.6° (0.1°–2.0°) 10.7° (1.9°–65.7°)
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