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ABSTRACT

Early detection of pulmonary nodules in computed to-
mography (CT) images is essential for successful outcomes
among lung cancer patients. Much attention has been given
to deep convolutional neural network (DCNN)-based ap-
proaches to this task, but models have relied at least partly on
2D or 2.5D components for inherently 3D data. In this pa-
per, we introduce a novel DCNN approach, consisting of two
stages, that is fully three-dimensional end-to-end and utilizes
the state-of-the-art in object detection. First, nodule candi-
dates are identified with a U-Net-inspired 3D Faster R-CNN
trained using online hard negative mining. Second, false pos-
itive reduction is performed by 3D DCNN classifiers trained
on difficult examples produced during candidate screening.
Finally, we introduce a method to ensemble models from both
stages via consensus to give the final predictions. By using
this framework, we ranked first of 2887 teams in Season One
of Alibaba’s 2017 TianChi AI Competition for Healthcare.

Index Terms— Computer-aided diagnosis, pulmonary
nodule, deep learning, computed tomography, lung cancer.

1. INTRODUCTION

Lung cancer has been the leading cause of all cancer-related
deaths, causing 1.3 millions death annually [1]. Detecting
pulmonary nodules early is critical for a good prognosis of
the disease, and low-dose computed tomography (CT) scans
are widely used and very effective for this purpose. However,
manually screening CT images is time-consuming for radi-
ologists who are increasingly overwhelmed with data. Ad-
vanced computer-aided diagnosis systems (CADs) have the
potential to expedite this process but the task is complicated
by the variation in nodule size (from 3 to 50 mm), shape,
density, and anatomical context, as well as the abundance of
tissues that resemble the appearance of nodules (e.g., blood
vessels, chest wall).

Many approaches have been proposed for this challenge,
often employing two stages: 1) nodule candidate screening,
which identifies candidates with high sensitivity at the ex-
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pense of accumulating many false positives, and 2) false pos-
itive reduction. Frameworks for the first stage commonly re-
lied on techniques including voxel clustering and curvature
computation [2, 3], while second stage methods carefully uti-
lized low-level descriptors such as intensity, size, sphericity,
texture, and contextual information [2, 3, 4]. These conven-
tional methods had limited discriminative power due to their
reliance on hand-crafted features. More recent efforts have
focused on the use of convolutional neural networks (CNNs)
and have produced encouraging results, but often use 2D or
2.5D networks in some components for inherently 3D data
[5, 6, 7]; nodules can be impossible to discriminate from tis-
sues such as blood vessels from axial slices. Moreover, frame-
works incorporating the state-of-the-art models in object de-
tection are still rare.

In this work, we propose a novel CAD framework that
consists entirely of three-dimensional deep convolutional
neural networks (3D DCNNs) end-to-end. Candidate detec-
tion is first performed by a U-Net [8]-like Faster Region-
based CNN (Faster R-CNN) [9], which is the state-of-the-art
model in object detection. The hard mimics identified by the
detector are then used to train highly discriminative, deep 3D
classifiers for false positive reduction. Both models heavily
utilize residual shortcuts [10] that promote performance gains
with deep architectures. The final prediction scores are gener-
ated by ensembling the detector and the classifiers, unifying
contributions learned from both stages. We validated our
proposed method on a dataset of 1000 low-dose CT images
provided by the 2017 TianChi AI Competition for Healthcare
organized by Alibaba [11], where our model ranked 1st in
Season One.

2. RELATED WORK

Ding et al. (2017) proposed a CAD system using Faster R-
CNN on 2D axial slices then false positive reduction with a
3D DCNN [5]. Dou et al. (2017) leverages 3D input but uses
a binary classifier 3D CNN with online sample filtering for
candidate screening, rather than a Faster R-CNN [12]. Our
work utilizes an efficient 3D Faster R-CNN for detection and
deep residual 3D classifiers for false positive reduction.
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3. PROPOSED FRAMEWORK

Our proposed method for nodule detection roughly follows
two stages: (1) candidate screening using a 3D Faster R-
CNN, and (2) subsequent false positive reduction using 3D
DCNN classifiers. The purpose of the Faster R-CNN in (1) is
to identify nodule candidates while preserving high sensitiv-
ity, whereas the classifiers in (2) finely discriminate between
true nodules and false positives. We find optimal results when
models from both stages are ensembled for final predictions.

Rather than using one stage in which we heavily retrain
the Faster R-CNN with hard examples, we believe the two-
stage framework provides more flexiblity in adjusting the
trade-off between sensitivity and specificity.

3.1. Candidate Screening Using 3D Faster R-CNN

The success of Faster R-CNN [9] and deep residual networks
[10] in natural images, and U-Net [8] in medical images, has
inspired the use of a deep residual 3D Faster R-CNN archi-
tecture with transposed convolutional layers, which is illus-
trated in Fig. 1. After a series of downsampling layers to
encode high-level information, we concatenate early features
with latter ones and feed them through several upsampling
transposed convolutions, decoding high-resolution informa-
tion regarding the nodule’s location and diameter. Because
we use over 30 convolutional layers, we use residual shortcuts
extensively. Memory limits on 4 GPUs made it necessary to
split the input image into overlapping 128× 128× 128 input
volumes, process them separately, and combine them.

The output is a 32× 32× 32 map of (x, y, z) coordinates,
diameter, and nodule probability corresponding to regions of
the input volume. These five features are parameterized by
three anchors whose sizes we set to 5, 10, and 30 mm based on
the nodule size distribution in our dataset. Each input region
is associated with output for each anchor, so the output map
is of shape 32× 32× 32× 5× 3.

We compute a classification loss Lcls for the predicted
nodule probabilities and four regression losses Lreg associ-
ated with predicted nodule coordinates and diameters. The
ground truth labels are determined for each anchor as follows.
If an anchor i overlaps with a nodule with an intersection over
union (IoU) equal or greater than a threshold of 0.5, we regard
it as positive (p∗i = 1). In contrast, if anchor i overlaps with
a nodule with an IoU less than 0.2, we regard it as negative
(p∗i = 0). All other anchors do not contribute to the loss.
Note also that only positive anchors contribute to the regres-
sion loss. The final loss for anchor i is defined as

L(pi, ti) = λLcls(pi, p
∗
i ) + p∗iLreg(ti, t

∗
i ) (1)

where pi is the predicted nodule probability; ti is the vec-
tor

ti =

(
x− xa
da

,
y − ya
da

,
z − za
da

, log
d

da

)
(2)

of predicted relative coordinates and diameter, where x, y, z, d
are the predicted nodule coordinates and diameter and
xa, ya, za, da are the coordinates and size of anchor i. Simi-
larly, the ground truth nodule is expressed as the vector

t∗i =

(
x∗ − xa
da

,
y∗ − ya
da

,
z∗ − za
da

, log
d∗

da

)
(3)

where x∗, y∗, z∗, d∗ are the coordinates and diameter of
the ground truth box. We set λ to 1. We use binary cross
entropy loss for Lcls and smooth L1 loss for Lreg .

3.1.1. Hard Negative Mining

Each input volume to the Faster R-CNN is dominated by nu-
merous trivial negative locations (air). To make the negative
samples as informative as possible, we used hard negative
mining [13]. A pool of N predictions corresponding to con-
dition negative anchors were randomly selected and ranked in
descending order according to nodule probability. The top n
samples were chosen to be considered in the loss function.

3.2. False Positive Reduction Using 3D DCNN Classifier

The predictions (x, y, z, d, p) from the Faster R-CNN are used
to extract 64 × 64 × 64 crops centered at (x, y, z) for input
to a DCNN classifier, whose architecture is illustrated in Fig.
2. It begins with several residual blocks of Conv, BatchNorm,
ReLU layers, which are ultimately fed to a fully-connected
layer to calculate the final classification score. We integrate
detailed local information about the nodule with more contex-
tual features by adding shortcuts from the end of each block
to the last feature map.

4. EXPERIMENTS AND RESULTS

We validated our framework on the large-scale TianChi com-
petition dataset, which contains CT scans from 1000 patients
from hospitals in China. The images were annotated by ra-
diologists similarly to LUNA16 [7], i.e. with nodule location
and size. We used 600 images for training (containing 969
annotated nodules), 200 for validation, and the remaining 200
comprised the test set.

The evaluation metrics included sensitivity and average
number of false positives per scan (FPs/scan), where a detec-
tion is considered a true positive if the location falls within the
radius of a nodule centroid. The competition ranked partici-
pants based on a CPM score defined as the average sensitivity
at seven predefined FPs/scan rates: 1/8, 1/4, 1/2, 1, 2, 4, 8.

4.1. Training

The Faster R-CNN was trained with Adam for 150 epochs.
The examples for each epoch were split such that 70% of



Fig. 1. General architecture of the candidate-screening 3D Faster R-CNN.

Fig. 2. General architecture of the 3D false positive reduction
classifier.

the examples consisted of the entire training set of anno-
tations (positive samples), and 30% consisted of random
nodule-lacking cropped images from random scans (negative
samples). The classifier was trained for 300 epochs with
Adam using the same positive examples as the Faster R-CNN
detector. These were balanced with hard negative samples,
i.e. 969 samples for which the detector assigned a confidence
score of 0.5 or greater. The input candidates for test set pre-
dictions were provided by the detector. For both detector
and classifier, the checkpoint with the highest CPM on the
validation set was used for prediction on the test set.

Table 1. Validation score comparison showing stepwise per-
formance gains with hard negative mining and classifier en-
sembling.

Prediction Method Validation CPM
Faster R-CNN 0.603
Faster R-CNN w/ hard negative mining 0.695
Average (Faster R-CNN, classifier) 0.723
Consensus (Faster R-CNN, 3 classifers) 0.758

4.2. Data Augmentation

We trained the Faster R-CNN with random x-, y-, and z-axis
flips; random scaling; and large jitters to promote transla-
tional invariance and improve generalization. The classifiers
were trained similarly along with random rotations. Inter-
estingly, even though the nodule locations predicted by the
detector are expected to be centers, minor regression errors
made it necessary to add small jitters of up to 2 mm.

4.3. Faster R-CNN and Classifier Ensemble Results

The stepwise performance gains of the Faster R-CNN with
hard negative mining and classifier ensembles are shown in
Table 1. Hard negative mining substantially increased the
validation CPM from 0.603 to 0.695, demonstrating the im-
portance of using the most informative negative samples.
The ensemble average of the Faster R-CNN and the classifier
achieved an improved validation CPM of 0.723.

The validation CPM was increased further still, to 0.758,
with a consensus ensembling method that worked as fol-
lows. Two additional classifiers with similar architecture
were trained. If the three classifiers agreed with the ensemble
average of the detector with the first classifier that a particu-
lar candidate location was the most probable nodule for that
patient, then the probability score was increased such that
consensus candidates would rank higher than non-consensus
ones across all test patients. Fig. 3 presents the free-response



Table 2. Top 5 submissions to Season One of the TianChi
challenge, for which 2887 teams participated.

Team Test CPM
Ours 0.815
Yi Yuan Smart HKBU 0.806
LAB2112 (qfpxfd) 0.780
Biana Information Technology 0.780
LAB518-CreedAI 0.769

receiver operating characteristic (FROC) curves. Note the
increase in sensitivity at 0.125 and 0.25 FPs/scan.

Fig. 3. Free-response receiver operating characteristic
(FROC) curves showing stepwise performance gains in val-
idation with hard negative mining and classifier ensembling.

Ultimately, this consensus ensembling method was used
in calculating our final test set predictions for the competition.
The CPM score was 0.815, surpassing all other submissions
for the TianChi challenge. Final rankings are shown in Table
2.

5. CONCLUSION

In this paper, we present our fully three-dimensional frame-
work of automatic pulmonary nodule detection. It consists
of a U-Net-like 3D Faster R-CNN, trained with online hard
negative mining, and a 3D classifier for false positive reduc-
tion. We introduce a consensus ensembling method to inte-
grate both models for predictions. We validate our method in
the 2017 TianChi Healthcare AI Competition, achieving su-
perior performance (0.815 CPM). We believe our model is a
powerful clinical tool that harnesses state-of-the-art architec-
tures in a way that captures the spatial nature of CT data.
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