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Abstract

In recent years there have been many studies indicating that multiple cortical features, extracted at 

each surface vertex, are promising in the detection of various neurodevelopmental and 

neurodegenerative diseases. However, with limited datasets, it is challenging to train stable 

classifiers with such high-dimensional surface data. This necessitates a feature reduction that is 

commonly accomplished via regional volumetric morphometry from standard brain atlases. 

However, current regional summaries are not specific to the given age or pathology that is studied, 

which runs the risk of losing relevant information that can be critical in the classification process. 

To solve this issue, this paper proposes a novel data-driven approach by extending convolutional 

neural networks (CNN) for use on non-Euclidean manifolds such as cortical surfaces. The 

proposed network learns the most powerful features and brain regions from the extracted large 

dimensional feature space; thus creating a new feature space in which the dimensionality is 

reduced and feature distributions are better separated. We demonstrate the usability of the 

proposed surface-CNN framework in an example study classifying Alzheimers disease patients 

versus normal controls. The high performance in the cross-validation diagnostic results shows the 

potential of our proposed prediction system.
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1. INTRODUCTION

The development of sophisticated, noninvasive 3D medical imaging technologies such as 

magnetic resonance imaging (MRI) provides a means to extract biomarkers to assist in the 

diagnosis of neurodevelopmental and neurodegenerative diseases. Neuroanatomical 

abnormalities in the cerebral cortex are widely investigated by examining cortical brain 

morphometric measures such as cortical thickness and cortical surface area [1]. Such cortical 

measures are usually extracted from highly-sampled 2D cortical surfaces, forming a high-

dimensional feature list (commonly close to 100,000 features or more). Based on the 

extracted features, machine learning classifiers can be used to predict diagnostic outcomes. 

Such classifiers undergo a learning process in which they learn the true category labels for 
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each set of features. However, it is hard to train stable classifiers using such a high-

dimensional feature space without over-fitting. One way to solve this is to subdivide the 

human cortex into a mosaic of anatomically and functionally distinct, spatially contiguous 

areas using standard parcellation atlases [2]. However, current parcellation atlases are 

generic and not optimized to a given study. For example, these parcellations do not take into 

account age or pathology of the studied subjects. Alternatively, dimensionality reduction 

techniques can be used to solve this problem in a supervised or unsupervised manner [3]. 

However, unsupervised methods run the risk of losing relevant information while supervised 

methods tend to be more biased and therefore harder to generalize. Therefore, there is a need 

to develop data-driven classifiers that can learn directly from such high-dimensional features 

without the need for a separate feature reduction step.

In recent years, convolutional neural networks (CNNs) have become the predominant 

machine learning tool in computer vision and speech recognition. The main strength of 

CNNs is their ability to extract mid-level and high-level abstractions directly from raw data 

with little need of prior knowledge. Another benefit of CNNs is that they are easier to train 

and have fewer parameters than fully connected networks with the same number of hidden 

units. However, extending the use of CNNs in applications where the input data has irregular 

non-Euclidean structure is still challenging. This is because of the missing notion of a grid 

on a non-Euclidean surface and the additional need for localized kernel design.

To solve this problem, Masci et al. [4] introduced a generalization of the CNN paradigm to 

non-Euclidean manifolds based on a local geodesic system of polar coordinates to extract 

patches, which are then passed through a cascade of filters and linear and nonlinear 

operators. The coefficients of the filters and linear combination weights are optimization 

variables that are learned to minimize a task-specific cost function. Although this 

implementation is promising, it usually fails if the surface mesh is very irregular or if the 

radius of the geodesic patches is large compared to a curvature radius of the shape. To solve 

these drawbacks, we would need to generate highly uniform surface representations as well 

as to decrease the geodesic path radius, which in turn might be a problem in terms of 

expected computational complexity. In another attempt, Boscaini et al. [5] presented another 

generalization based on localized frequency analysis (a generalization of the windowed 

Fourier transform to manifolds) that is used to extract the local behavior of some dense 

intrinsic descriptor, roughly acting as an analogy to patches in images. The resulting local 

frequency representations are then passed through a bank of filters whose coefficients are 

determined by a learning procedure minimizing a task-specific cost. In this implementation, 

the authors addressed some of the limitations described in the previous paper; however, this 

work was only designed to capture shape descriptors on the surface and is not suitable to be 

used with other surface measures.

To overcome the above problems, we propose a novel CNN architecture that utilizes 

geodesic-based kernels in learning the optimal features and brain regions in a data-driven 

way (see Fig. 1). The contributions of this paper are three-fold:

• A general definition of kernels on non-Euclidean cortical surfaces using a locally 

constructed geodesic grid.
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• A general framework for learning on cortical surfaces using novel surface 

convolution, pooling, and resampling layers.

• An accurate classification in a high-dimensional feature space without the need 

for a separate dimensionality reduction step.

Details of the proposed CNN extension will be provided next.

2. METHOD

As shown in Fig. 1(a), a novel extension to the classical CNN framework is proposed, which 

includes several layers that are applied subsequently. Details of these proposed layers are 

given next.

Convolution on Cortical Surfaces

Convolution of data living on cortical surfaces is defined as a correlation with a surface 

kernel that is used to extract corresponding patches on the manifold. A localized grid is 

established at each surface point in a way that considers the intrinsic shape of the underlying 

manifold. To achieve that, we rely on the geodesic (shortest path) distances computed at 

each surface point to reconstruct a local system of geodesic coordinates. The geodesic 

distance to a collection of points satisfies a non-linear differential equation. This so-called 

the Eikonal equation gives the viscosity ϕ(x, y) according to

∇ϕ = F . (1)

This ϕ can be interpreted as a weighted distance map from an initial seed, where the weights 

are given by the function F (x, y) which is a scalar positive function [6]. It follows that, the 

curve, C(t) giving the level set of distance, defined as points on the front of the function ϕ at 

time t propagates following the evolution equation

d
dt C(t) =

n xy
P(x, y) , (2)

where n xy is the exterior unit normal vector to the curve at the point C(t) = (x, y). The 

function F (x, y) = 1/P (x, y) is the propagation speed of the front, C(t).

To compute geodesic distances on a triangular manifold M: (V, E, F), the fast marching 

method (FMM) is used to provide an approximation of the true geodesic distance field for 

each vertex v ∈ V on the manifold. FMM relies on an upwind finite difference 

approximation to the gradient and a resulting causality relationship, which results in a 

Dijkstra-like algorithm but with an update step for triangles instead of edges [7, 8].

The radial coordinates relative to a vertex v on the cortical surface are defined as the level 

curves of the geodesic distance function ϕ = ri, where ri is the radius of the ith geodesic ring 

(Fig. 2(a)). A grid is now formed at v (Fig. 2(b) and (c)). Angular partitions are then created 
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by splitting the curve of the geodesic distance function ϕ = ri into segments of equal length 

and propagating directions from these points inward along the gradient ∇Mϕ. This geodesic 

grid at v is formed from partitions or regions Pk with a similar surface area, and the order of 

these partitions is established using the spherical parameterization of the surface (Fig. 2(b)). 

Finally, the feature values over the points in each partition Pk are summarized using a 

specified number of sampled points mkj (Fig. 2(c)).

In the training phase, N geodesic kernels are used to produce the corresponding feature maps 

f1, …, fN. A pooling layer is then used to produce a fused feature map f by selecting the 

maximum feature response for each v on the surface from f1, …, fN.

Surface Resampling

To reduce the number of training parameters and to learn an abstracted form of the 

representation, the feature dimensionality is reduced via surface subsampling. This is done 

by reducing the number of triangles in the input triangle mesh, forming a good 

approximation to the original geometry. Based on repeated edge collapses, a surface 

simplification algorithm is employed [9, 10]. Edges are placed in a priority queue based on a 

quadric error measure Q that is associated with each vertex v: (p, s) of the surface, where p 
is the geometric position and s a set of attribute scalars. Let v′: (p′, s′) be the projection of v 
onto the associated affine subspace, and let Q be given by

Q(v) = ‖p − p′‖2 + λ‖s − s′‖2, (3)

the weighted sum of the geometric distance error ||p − p′||2 and the attribute deviation error ||

s−s′||2. As edges are deleted, the quadric error measures associated with the two endpoints 

of the edge are summed and an optimal collapse point is computed. This edge collapse 

process is repeated until the desired surface resolution level is reached or topological 

constraints are violated. In this paper, Gaussian and mean curvatures along with the geodesic 

distances are used as attributes in the in the quadric error measure to ensure the uniformity 

and integrity of the resampled surfaces. Fig. 3 shows a resampled surface using the proposed 

surface simplification layer.

Finally, these newly defined convolution and resampling techniques will enable the 

development of a novel network architecture that can extend classical CNN to the non-

Euclidean domain.

3. EXPERIMENTAL RESULTS

Data

We applied our surface-CNN to a subset of the preprocessed structural MRI data from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [11], specifically the first 

scan available for Alzheimer’s disease (AD) patients and normal control patients (CN). This 

resulted in a dataset of 86 subjects of two classes: 39 AD patients (25 Males, 14 Females; 

75.1± 8.2 years) and 47 CN patients (23 Males, 24 Females; 73.2± 5.7 years).
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Surface Preprocessing

The FreeSurfer [12] pipeline was used to segment the MRI images and produce registered 

triangulated surfaces of the cortical white matter and gray matter. Cortical thickness (CT) 

and cortical surface area (SA) were then measured. For the purpose of comparison, we 

summarized CT and SA using the Desikan-Killiany parcellation atlas (DK 70 ROIs) [13]. 

The resampled cortical surfaces consisted of 81,920 high-resolution triangles (40,962 

vertices) per hemisphere.

Network Architecture

As shown in Fig. 4, geodesic convolution was applied first on features that live on a high-

resolution average surface using 64 geodesic kernels (2 mm step size for each geodesic ring) 

with trainable weights and non-linearity in the form of the hyperbolic tangent (tanh) 

activation function. The newly generated features were then summarized into a single 

feature using a maximum pooling layer. This was followed by a surface resampling with a 

factor of 4, where feature values are mapped to the lower resolution surface by averaging the 

closest 5 points’ values. This process was repeated for the new lower resolution surface but 

with proportionally increased geodesic kernel ring step size. After reaching a reasonable 

number of features, fully connected layers were applied with rectified linear (relu) neurons 

(total of 124,994 units), and to overcome the over-fitting problem associated with deep 

neural nets with many parameters, dropout techniques were used after each hidden layer 

(dropout rate of 0.2). Max-norm regularization was also used to constraint kernel weights, 

which has been shown to be useful in deep neural networks.

Performance Evaluation

The proposed techniques were tested by applying them to each feature extracted (CT and 

SA) to classify AD subjects from CN subjects. For training, both sets of features were 

standardized using Z-score normalization that rescales the features so that they will have 

zero mean and unit variance. To handle the classes’ imbalance in the training phase, a 

method called SMOTE [14] was used to over-sample the minority class to match the number 

of samples in the majority class with 5 nearest neighbors used to construct these synthetic 

samples. The proposed network was compiled using the Adam optimization algorithm and 

the binary cross-entropy loss function. The network was trained using the back-propagation 

algorithm for 500 epochs and a batch size of 1.

The network performance was evaluated using 10-fold cross-validation via the mean area 

under the ROC curve (AUC), sensitivity (SEN), specificity (SPC), positive predictive value 

(PPV), and negative predictive value (NPV). Only the non-synthetic minority class samples 

were used in the testing phase. The performance of the proposed CNN extension was 

assessed by a comparison against a similar network with only fully connected layers that 

was trained using features summaries provided by DK ROIs. The classification results for 

each method are provided in Table 1.

As documented in Table 1, the proposed network performs notably better than typically used 

regional summaries, according to every performance metric. To show the ability of the 

proposed CNN extension to provide an insight on which brain regions are contributing more 

Mostapha et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in separating the two classes, Fig. 5 shows the average features learned after applying the 

first block of convolution, pooling, and resampling layers. Fig. 6 show those regions 

showing statistically significant group differences. This clearly demonstrates the potential of 

the proposed CNN extension in dynamically learning regional ROIs that is specific to the 

training dataset.

4. CONCLUSIONS

This paper presents a novel data-driven generalization of CNNs on non-Euclidean cortical 

surfaces. The proposed CNN extension is applicable to various kinds of clinical applications 

that involve learning from high-dimensional features living on non-Euclidean manifolds.

The high performance of the proposed techniques is confirmed on features living on cortical 

surfaces. The obtained results are promising in demonstrating the ability of the proposed 

techniques in transforming high-dimensional features into a compact high-level 

representation where classes are better separated and important surface regions are 

emphasized. However, more experiments need to be conducted with different datasets to find 

the optimal network architecture and parameters (e.g., determining the optimal kernel size 

and number of partitions remains an open point of research).

Our future work will include extending the proposed network to be able to learn from a 

combination of extracted features (e.g., CT and SA together). Also, we plan to design a 

synthetic experiment to investigate and confirm the usefulness, significance, and reliability 

of the proposed techniques. Finally, we plan to use the proposed techniques to introduce an 

extension to deep convolutional generative adversarial networks (GANs) that can produce 

synthetic features on cortical surfaces, which better deal with the imbalance problem that 

usually exists in medical datasets.
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Fig. 1. 
The proposed CNN extension on cortical surfaces. (a) A geodesic block consist of surface 

convolution, pooling, and resampling layers that are applied subsequently. (b) Surface kernel 

that is reconstructed using a local system of geodesic coordinates.
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Fig. 2. 
Local geodesic kernel partitioned into seven ordered regions. (a) Geodesic distance level 

curves. (b) Angular partitions created using inward ray shooting and ordered by the surface 

spherical parameterization. (c) Regional feature summaries are created by averaging six 

sampled feature values (four measurements at the region corners and two measurements at 

the straddling of each region). Showing here the measurements locations for P3 as an 

example.
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Fig. 3. 
An example of a resampled surface showing preserved shape and geodesic distances at 

different resolutions.
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Fig. 4. 
The proposed CNN extension network architecture containing four convolutional blocks for 

each hemisphere followed by fully connected and dropout layers.
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Fig. 5. 
Visualization of the mean class-specific learned features after applying the first surface 

convolution block of layers. The proposed network can learn the most powerful features and 

brain regions that better separate different classes.
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Fig. 6. 
Uncorrected statistical t-test results on the first geodesic block output indicated that several 

brain regions (36% of the whole brain showing here in red) showed statistically significant 

(p-value < 0.05) group differences.
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