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Abstract. Two successful approaches for the segmentation of biomedi-
cal images are (1) the selection of segment candidates from a merge-tree,
and (2) the clustering of small superpixels by solving a Multi-Cut prob-
lem. In this paper, we introduce a model that unifies both approaches.
Our model, the Candidate Multi-Cut (CMC), allows joint selection and
clustering of segment candidates from a merge-tree. This way, we over-
come the respective limitations of the individual methods: (1) the space
of possible segmentations is not constrained to candidates of a merge-
tree, and (2) the decision for clustering can be made on candidates larger
than superpixels, using features over larger contexts. We solve the op-
timization problem of selecting and clustering of candidates using an
integer linear program. On datasets of 2D light microscopy of cell popu-
lations and 3D electron microscopy of neurons, we show that our method
generalizes well and generates more accurate segmentations than merge-
tree or Multi-Cut methods alone.

1 Introduction

In this paper, we are addressing the problem of segmenting multiple objects in
biomedical images, possibly against background. For this problem, merge-tree
methods and Multi-Cut methods are amongst the best performing for a range of
data modalities.

Both methods start with an initial set of superpixels, that is assumed to
provide an oversegmentation. In merge-tree methods, these superpixels are
iteratively merged to obtain a hierarchy of candidate segments. Amongst all
candidates, a cost-minimal and non-overlapping subset is selected to yield a seg-
mentation. The advantage of these methods is that they can consider candidates
larger than the initial superpixels and thus use more meaningful features. A
clear disadvantage is the limited expressiveness, as these methods require that
each object is correctly segmented by one candidate in the merge-tree. Merge-
tree methods demonstrate state-of-the-art performance for the segmentation of
cells in 2D light microscopy [4J5IR]. Variations of this approach have also been
successfully applied to the segmentation of neurons in volumes of electron mi-
croscopy [709], but were ultimately outperformed by Multi-Cut methods [12].
Multi-Cut methods consider finding a segmentation as an instance of a clus-
tering problem on superpixels [IJI0]. For that, edges in an adjacency graph of
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Fig. 1: Mlustration of CMC compared to a merge-tree and Multi-Cut segmenta-
tion. In the superpixel hierarchy shown on the left, there is no candidate pro-
ducing the desired segmentation of the cell. Consequently, the best merge-tree
segmentation (which does not use the adjacency edges between candidates) is
the selection of candidates d and h as two separate objects (highlighted in or-
ange) which introduces a split error. CMC, in contrast, introduces adjacency
edges between all neighboring candidates. Therefore, CMC can pick candidates
d and h, and the adjacency edge (d, h) to merge these candidates (highlighted in
blue). This way, a segment can be assembled that is not limited by the heuristic
superpixel hierarchy. The Multi-Cut on the same initial superpixels could possi-
bly achieve the same segmentation, but has to resort to smaller superpixels that
lack structural information (highlighted in green).

superpixels are cut. A segmentation is obtained as the connected components of
a cost-minimal cut, where constraints ensure that there is no path connecting
two separated superpixels. In contrast to merge-tree methods, a correct segmen-
tation can theoretically always be obtained, if the initial superpixels are overseg-
menting. However, small superpixels carry the risk of not capturing meaningful
features, like the local orientation of a cellular structure or the diameter of a
cell, which could help to resolve ambiguities during inference. Multi-Cut meth-
ods are the current state of the art for the segmentation of neurons in electron
microscopy volumes [6IIO0JTII2], but are outperformed by merge-tree methods on
the segmentation of cells in light microscopy images [§].

The specific advantages and disadvantages of the two methods make them
perform differently depending on the characteristics of a given dataset. In par-
ticular, none of the two methods performs well on both 2D segmentation of cells
in light microscopy and 3D segmentation of neurons in electron microscopy.

To combine the advantages of both methods (larger feature context of merge-
tree methods and the expressiveness of Multi-Cut methods), we introduce a
segmentation model that jointly selects and clusters segment candidates from a
merge tree. First, we obtain a merge-tree of segment candidates following greedy
merging on initial superpixels. We then introduce adjacency edges between all
adjacent candidates across all levels of the tree and train a classifier on ground-
truth to obtain a cost for the selection of each candidate and each merge of an
adjacency edge. Finally, we find the globally cost-minimal selection and cluster-
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(a) candidate mc (b) valid selection (c) invalid selection

Fig. 2: Tllustration of the proposed model. @ Lower part: Given initial super-
voxels (a,b,c, and d), a heuristic region merging strategy is used to generate
larger candidates (e, f, and g). Upper part: The candidate region adjacency graph
(CRAG) is used to represent all candidates, their adjacencies across all levels
(solid gray lines), and subset relations (black arrows). [(b)] A selection of can-
didates and adjacency edges producing a valid segmentation. Note that this
segmentation can not be produced by the merge-tree method alone, since it can
not merge e and ¢. A Multi-Cut method could generate the same segmentation
by merging a, b, and ¢, but would not be able to exploit the features extracted
on the larger candidate e. An invalid selection of candidates and adjacency
edges: Candidates a, b overlap with e and can not be selected with e at the same
time. Further, a is merged both with b and ¢, but b and ¢ are not merged, thus
violating the transitivity of equivalence.

ing of candidates by solving an integer linear program (ILP) with a cutting-plane
method. Compared to the standard formulations for merge-tree and Multi-Cut
segmentations, our model has two advantages:

First, our model unifies the two method families including both as special
cases (see Fig. . A merge-tree segmentation in the style of [4I8] can be ob-
tained by simply omitting the adjacency edges. Similarly, the Multi-Cut for-
mulation [IJI0] can be obtained by omitting candidates other than the initial
superpixels. In our model, however, a valid solution allows to select higher-level
candidates and merge them with lower-level candidates. This allows us to train
a classifier on more meaningful features that are only available for larger can-
didates. In contrast to merge-tree methods, however, we are not limited by the
choice of the extracted candidates. Every possible segmentation given the initial
superpixels can still be realized.

Second, by allowing candidates to not be selected at all, our formulation
is particularly well suited to segment several foreground objects against back-
ground. This is required in 2D cell segmentation from light microscopy images
where foreground objects are not tiling the plane. Our model has a dedicated
cost contribution for the selection of candidates which depends on features of
foreground objects. This is in contrast to previous Multi-Cut methods that re-
quired a post-processing step to filter background segments from foreground
segments [14UT3].
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We evaluate our model in two different and dissimilar setups: First, on the
segmentation of cells in 2D light microscopy (involving three datasets of different
resolution, microscopy modality, and cell types), and second, on the reconstruc-
tion of neurons from electron microscopy volumes of neural tissue. Our model
shows a consistent improvement over both merge-tree methods and Multi-Cut
methods. This is of particular interest since neither merge-tree methods nor
Multi-Cut methods deliver state-of-the-art performance on both datasets jointly.

2 Method

In order to combine the advantages of merge-tree methods and Multi-Cut meth-
ods, we introduce a model generalizing both: the Candidate Multi-Cut (CMC).
In our model, the standard Multi-Cut formulation [I] is extended by considering
additional candidate segments formed by merging initial superpixels to obtain
a merge-tree. Various merging strategies can be used to obtain a merge-tree. In
Section |3 we show two strategies for the datasets used here.

Given a merge-tree, we are addressing a segmentation problem in terms of
the selection of candidate regions and adjacency edges (see Fig. . Let G =
(V,E,S, f,g) be the candidate region adjacency graph (CRAG), where V is the
set of all candidate regions (including the original superpixels), E C V x V
the set of undirected edges indicating region adjacencies across all levels of the
merge-tree, S C V x V the set of directed edges indicating subset relations of
the candidate regions of the merge-tree, and f : V +— R and g : E — R are
cost functions for the selection of candidates and adjacency edges to merge,
respectively. These costs are trained on features extracted for candidates and
adjacency edges, see Section [3] for details. We encode a selection and merging
of candidates with binary indicator variables y = (y; € {0,1} | i« € V) and
m = (m. € {0,1} | e € E). Setting y; = 1 means that the candidate represented
by node ¢ is part of an object (as opposed to being considered background).
Setting m; j) = 1 states that the adjacent candidates ¢ and j are part of the
same object. By rewriting the costs f (i) and g(e) as vectors f = (f; e R|i € V)
and g = (g € R | e € E), such that they are congruent to y and m, we find a
cost-minimal segmentation by minimizing

(v, f) + (m,g). (1)

However, not every assignment of the indicators y and m results in a valid seg-
mentation. We ensure consistency with the introduction of three types of con-
straints: overlap constraints ensure that no overlapping candidates are selected
at the same time, incidence constraints force incident candidates of selected ad-
jacency edges to be selected as well, and path constraints state that for every
adjacent pair of candidates that are not merged, there is no path of selected ad-
jacency edges connecting them indirectly. See Fig. [2c| for an illustration of these
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constraints. More formally, we require:

> u<t VC eC (2)

ieC
2m; 5 — yi — Y5 <0 V(i,j) € E (3)
> me—m <Pl -1 V(i,j) € E,YP € P j). (4)

ecP

For the overlap constraints in Eq.[2, C C 2" denotes the set of all conflict cliques,
i.e., a set of candidates that are mutually overlapping. For tree-shaped candidate
subset graphs like those used here, the set C simply contains all candidates
of all paths from a leave node to the root node. In the example in Fig.
C = {{a,e,g},{b,e,9},{c, f,9},{d, f,9}}. The incidence constraints in Eq.
force the indicators y; and y; to be selected, if my; ;) is selected. Finally, the
path constraints in Eq. [4 ensure that if an adjacency edge was not selected
(i.e., m(; ;) = 0), there is no path of selected adjacency edges connecting them
otherwise (i.e., the sum of selected edges along the path is strictly smaller than
the length of the path). P jy C 2F denotes the set of all paths on adjacency
edges connecting candidates ¢ and j. Since there are in general exponentially
many paths connecting two candidates in a CRAG, we do to not add these
constraints initially. Following a cutting plane strategy, we solve an ILP without
those constraints, and add violated constraints as needed and resolve until a
consistent solution is found.

3 Experiments and Results

Datasets. We validate our method on four datasets (see examples in Fig.
which differ greatly in image resolution, microscopy modality, and cell type
(shape, appearance and size): (A) phase contrast images of cervical cancer Hela
cells [3] (B) bright field images of in-focus Diploid yeast cells [I4] (C) bright field
images of Fission yeast cells [I1], and (D) 3D serial section electron microscopy
volume of neural tissue [2].

Merge-Tree Generation. Our model requires us to generate a merge-tree to
build the CRAG. For datasets A, B, and C, we ran a seeded watershed algorithm
to obtain an initial oversegmentation on the pixel-wise boundary predictions
from [§]. We obtained a merge-tree by iteratively merging neighboring superpix-
els with minimal merge score. The merge score we used is the product of the
smaller region’s size and the median intensity of the boundary pixels separating
the neighbors. From this merge-tree, we included all candidates that are the re-
sult of 5 or less merges in the CRAG, and added adjacency edges between each
pair of touching candidates (considering a 4-neighborhood) across all levels. For
dataset D, we generated merge-trees in a similar fashion for each 2D image of
the stack individually, using the boundary predictions from [2]. In the CRAG,
we only included the leaf nodes of the merge-tree and the largest candidates
below a merge score that still favors oversegmentation.
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raw ground truth

Fig.3: Samples of the segmentations obtained on datasets A, B, and C (from
top to bottom), using the Multi-Cut formulation (MC) [I], the merge-tree seg-
mentation (MT) [8], and our model (CMC).

Features. For all experiments, we extracted the same features for each candi-
date: size, circularity, eccentricity, and a contour angle histogram with 16 bins.
In addition to that, we extracted intensity features (sum, mean, variance, skew-
ness, kurtosis, histogram with 20 bins, 7 histogram quantiles) from the raw and
boundary prediction images for the whole candidate and for the contour pix-
els. For edge features, we used the size of the contact area between neighboring
candidates, as well as mean, variance, and skewness of the intensities across
the boundary pixels separating the neighbors. In addition to that, we added
the absolute difference, min, max, and sum of each feature of the two adjacent
candidates.

Training. The training consists of finding suitable costs for candidates and
edges, given a training dataset with a CRAG and a ground truth image or vol-
ume. To learn the costs, we trained a random forest classifier by first generating
a consistent CMC solution that is closest to the ground truth. For that, we assign
each leaf node to the ground truth region with largest overlap. We then selected
all candidates that cover leaf nodes with the same label as positive candidate
instances. Similarly, we selected edges linking selected candidates with the same
label as positive edge instances. All other candidates or edges were considered
negative instances. Note that this training setup includes edges spanning dif-
ferent levels of the CRAG, and thus allows the classifier to relate features of
candidates of different sizes. For datasets A, B, and C, we only trained the edge
costs as described, and learned the node costs as suggested in [g].
Comparison. We compare the performance of our model on datasets A, B,
and C against a Multi-Cut (MC) [I] and the merge-tree (MT) method described
in [8]. For both, we use exactly the same candidates (for MT), edges of leaf nodes
(for MC), features, and learning method as described above. On dataset D, we
compare against a Multi-Cut (MC) and the assignment model (AM) proposed
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VOI DS VOI DS
split merge total| prec. rec. F-sc. split merge total| prec. rec. F-sc.

MC|0.404 0.644 1.048|0.987 0.775 0.868 MC|0.249 0.567 0.816(0.977 0.703 0.817
MT|0.488 0.297 0.785/0.903 0.997 0.948 MT|0.423 0.219 0.643|0.895 0.945 0.919
CMC|0.487 0.295 0.782[0.907 0.997 0.950| | CMC|0.424 0.215 0.638(0.896 0.945 0.920
MT*|0.493 0.222 0.715|0.688 1.000 0.815 MT™*|0.349 0.108 0.457|0.792 1.000 0.884
CMC*[0.433 0.226 0.659(0.995 0.997 0.996| |CMC*|0.312 0.109 0.421|1.000 1.000 1.000
DATASET A DATASET B
VOI DS VOI RAND
split merge total|prec. rec. F-sc. split merge total
MC|0.225 0.238 0.463|0.991 0.821 0.898 AM|3.644 0.772 4.416| 0.950
MT|0.308 0.095 0.403|0.959 0.956 0.958 MC|1.477 0.604 2.081| 0.964
CMC|0.308 0.095 0.403[0.959 0.956 0.958| | CMC|1.477 0.601 2.078| 0.965
MT*|0.274 0.072 0.346|0.922 1.000 0.959 AM*[2.914 0.544 3.458| 0.960
CMC*[0.268 0.072 0.340{1.000 1.000 1.000| |CMC™*|1.041 0.569 1.610| 0.966
DATASET C DATASET D

Table 1: Segmentation and detection results on datasets A, B, and C (2D light
microscopy) and segmentation results on dataset D (3D electron microscopy).
The best values of the used measures are highlighted: variation of information
(VOI), detection score (DS) [8], and Rand index (RAND). We compare the stan-
dard Multi-Cut formulation (MC) [I] and the merge-tree segmentation (MT) [8]
against our model (CMC) on datasets A, B, and C. For the neuron reconstruc-
tion in dataset D, we compare against the assignment model (AM) [7] and the
Multi-Cut (MC). Entries with * have been found by matching the ground truth
as closely as possible. They show the best achievable result given the initial su-
perpixels on the respective dataset and thus show the performance limit of each
method. Note that MT and AM have little room for improvement (using better
features, for instance), whereas the CMC could benefit a lot from better features
or different learning methods.

in [7], which is a variation of a merge-tree method. Again, we used the same
candidate hierarchy for AM, the same adjacency edges for MC, and the same
learning method as used for CMC. We trained each method on the same training
subset of each dataset, and report results on the remaining images or volume.

Evaluation. For datasets A, B, and C, we report two measures, as in [8]: varia-
tion of information (VOI) to measure segmentation accuracy and detection score
(DS) to measure the detection accuracy (see Table[l)). The Candidate Multi-Cut
improves accuracy on two of the three datasets, and produces the exact same
result as MT on dataset B. In the same table, we also report the results of the
best achievable segmentation of each method, denoted as MT* and CMC*. We
found these segmentations in the same way we generated the training samples
as described above. It can clearly be seen that CMC has a higher expressiveness,
although it uses the same initial superpixels as MT. For dataset D, we report
VOI and the Rand index (RAND) to measure segmentation accuracy (see Ta-
ble . The Candidate Multi-Cut improves accuracy compared to both MC and
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AM. Again, we report the best achievable segmentation as AM* and CMC* and
find CMC to be more expressive than AM.

4 Conclusions

We presented a generalization of two successful segmentation methods for biomed-
ical images and demonstrated that our model combines the advantages of both
methods. This is a worthy contribution on its own as it broadens the range of
applications that a single method can be used for. We find this especially re-
markable as our method does not introduce new hyperparameters, and thus its
advantages come basically “for free”. On top of that, we could report a mod-
est improvement in segmentation and detection accuracy which shows that our
generalized model is more than competitive with its specialized variants. Con-
sidering that our method has a higher expressiveness compared to merge-tree
methods and larger context than Multi-Cut methods, we believe that further
improvements are possible by learning node and edge costs in a more principled
way. We believe that this, together with the design or learning of features that
are more discriminative, is a promising direction for further research.
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