
PROBING IN VIVO MICROSTRUCTURE WITH T1-T2 RELAXATION 
CORRELATION SPECTROSCOPIC IMAGING

Daeun Kim*, Jessica L. Wisnowski†, Christopher T. Nguyen#, and Justin P. Haldar*

*Electrical Engineering, University of Southern California, Los Angeles, CA, USA

†Radiology and Pediatrics, Division of Neonatology, Children’s Hospital Los Angeles, CA, USA

#Cardiology, Massachussetts General Hospital, Boston, MA, USA

Abstract

Quantitative MR relaxometry can provide unique subvoxel information about the microscopic 

tissue compartments that are present in a large imaging voxel. However, unambiguously 

distinguishing between these tissue compartments continues to be challenging with conventional 

methods due to the illposedness of the inverse problem. This paper describes a new imaging 

approach, which we call T1 Relaxation-T2 Relaxation Correlation Spectroscopic Imaging (RR-

CSI), that uses two-dimensional relaxation encoding combined with spatially-constrained 

reconstruction to help overcome illposedness. Results are shown with real data, including what we 

believe to be the first in vivo demonstration of multidimensional relaxation correlation 

spectroscopic imaging.

1. INTRODUCTION

Imaging microscopic tissue features is very important for a number of biomedical 

applications, but is difficult to do directly with conventional MRI due to practical limits on 

spatial resolution. For example, in vivo human scans are often limited to millimeter-scale 

voxels. To avoid resolution limits, modern microstructure MRI methods often represent each 

voxel as a partial volume mixture of multiple tissue micro-compartments, and use contrast 

encoding methods to distinguish and unmix the different sub-voxel components.

Multicomponent relaxation imaging [1–3] represents one such form of microstructure 

imaging, and leverages the fact that MR relaxation parameters like T1, T2, and T2
∗ are 

sensitive to microscopic biochemical tissue features and vary between different tissue 

compartments of interest. The basic idea of the approach is to generate a 1D “spectrum” for 

each voxel of an MR image, where each spectrum describes the distribution of the relaxation 

parameter values (for a given parameter of interest) that coexist with the corresponding 

voxel. This results in a spectroscopic image that contains both spatial and spectral 

dimensions, and whose spectral peaks can be integrated along the spectral dimension to 

generate spatial maps corresponding to different microscopic tissue compartments. For 

example, myelin water imaging [1] is a multicomponent relaxation method that is used to 

estimate a fractional map of the microscopic myelin water compartment within the brain.
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However, estimating multiple relaxation parameters within a single voxel is equivalent to the 

estimation of multi-exponential decays, and is a classically ill-posed problem. In part due to 

this ill-posedness, modern 1D relaxation imaging methods that only encode a single 

relaxation parameter are not currently able to separate all of the different tissue 

microstructural compartments that are known to exist within a voxel. In this work, we 

describe a new approach to microstructure imaging that uses 2D relaxation encoding of both 

the T1 and T2 relaxation parameters along with spatially-constrained estimation of the high-

dimensional spectroscopic image. This new approach, which we call T1 Relaxation-T2 

Relaxation Correlation Spectroscopic Imaging (RR-CSI), has substantially enhanced 

capabilities for mapping of microstructural compartments. While we have reported a 

preliminary description of RR-CSI in a very recent conference [4], this paper will present 

the first in vivo RR-CSI spatial maps of microscopic tissue compartments.

Our new RR-CSI approach is motivated in part by previous 2D relaxation approaches [5–9], 

w2hich Ref. [7] names as relaxation-relaxation correlation spectroscopy (RR-COSY). These 

RR-COSY methods have been shown to provide much better compartment resolution 

capabilities than 1D relaxation encoding approaches. However, while some of these existing 

approaches have acquired spatially-resolved imaging data, they have either focused on 

voxel-by-voxel or volume-averaged spectrum estimation, and unlike our new RR-CSI 

approach, have never been used for in vivo spatial mapping.

In addition, our new RR-CSI approach is also motivated by our recent introduction of 

diffusion-relaxation correlation spectroscopic imaging (DR-CSI) [10]. DR-CSI was a 

fundamentally new approach to correlation spectroscopic imaging that used spatially-

constrained estimation to enable the first demonstration of spatial mapping in the context of 

diffusion-relaxation spectroscopy. DR-CSI uses a similar 2D contrast encoding experiment 

to RR-CSI and has similar inverse problem structure, but makes use of different contrast 

mechanisms that may be sensitive to different aspects of the tissue microstructure. As we 

were developing DR-CSI, we made the key observation that while voxel-by-voxel 2D 

spectrum estimation is easier than voxel-by-voxel 1D spectrum estimation, it is still a 

difficult ill-posed inverse problem. As a result, 2D spectrum estimation still generally 

required a large number of high SNR measurements to obtain good results. On the other 

hand, inspired by theoretical observations from [11], we realized that spatial-spectral 

modeling of the data and spatially-constrained estimation of a spectroscopic image could 

substantially improve the posedness of the inverse problem. The incorporation of spatially-

constrained estimation into DR-CSI was a major breakthrough that enabled high-quality 

spatial maps to be derived from much less and lower-quality data than were required by 

previous methods that used voxel-by-voxel or volume-averaged spectrum estimation.

Our new RR-CSI approach combines the contrast encoding ideas from RR-COSY with the 

spatial-spectral modeling and spatially-constrained estimation ideas of DR-CSI. Compared 

to previous approaches, RR-CSI enables high-quality multidimensional spectroscopic 

images to be derived from a relatively small number of data samples, which makes it 

practical enough for us to apply to in vivo human subjects. As our results will demonstrate, 

the RR-CSI approach has the potential to provide powerful new insight into the microscopic 

compartments within biological tissues.
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2. DESCRIPTION OF RR-CSI

Without loss of generality (see [4] for a more general description), we will describe RR-CSI 

for an inversion-recovery spin echo experiment. In this context and assuming no exchange, 

the ideal noiseless data acquisition model is given by

m(x, y, TI, TE) = ∬ f (x, y, T1, T2)(1 − 2e
−T1/T1)e

−TE /T2dT1dT2, (1)

where (x, y) are the spatial coordinates, m(x, y, TI, TE) is the measured data acquired with 

contrast encoding parameters TI (inversion time) and TE (echo time), and f(x, y, T1, T2) is 

the unknown 4D spectroscopic image that we wish to estimate.

Given this signal model, RR-CSI seeks to estimate f(x, y, T1, T2) under the constraints that 

we want to estimate a spectroscopic image that is both nonnegative (a classical constraint 

within the RR-COSY literature [5–9]) and spatially smooth (to substantially improve the 

conditioning of spectrum estimation [10, 11]). Practically, we perform this estimation 

procedure by solving a dictionary-based spatially-regularized nonnegative least squares 

optimization problem. In particular, we use a dictionary of different T1 and T2 values to 

generate a discretized approximation of Eq. (1):

mn = Kfn for n = 1, …, N . (2)

In writing this expression, we assume that data is collected for P distinct combinations of the 

contrast encoding parameters TI and TE, represented as (TIp, TEp) for p = 1, …,P; we 

assume that a measured image with N voxels is generated for each set of contrast encodings, 

and that there is one-toone voxel correspondence between different contrasts; we use 

mn ∈ ℝP to denote the data vector corresponding to the nth voxel, containing all P of the 

measured contrasts; we assume that we have chosen a set of Q discrete T1 and T2 

combinations to represent our dictionary, represented as (T1q, T2q) for q = 1, …,Q; we use 

K ∈ ℝP × Q to denote the dictionary matrix with entries K pq = (1 − 2e
−TI p/T1q)e

−TEp/T2q; 

and we use fn ∈ ℝQ is to denote the vector of samples of the multidimensional spectrum for 

the nth voxel. Note that the ill-posedness of 2D spectrum estimation arises because the 

columns of the K matrix are formed from exponential decays and are highly correlated with 

one another.

Our proposed RR-CSI approach estimates the spectroscopic image by solving the following 

optimization problem:

fn n = 1
N = argmin

fn n = 1
N

∑
n = 1

N
tn mn − kfn 2

2 + λ ∑
j ∈ Δn

f j − fn 2
2 (3)

Kim et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subject to the constraints that fn > 0 for n = 1, …,N, with the vector inequality interpreted 

elementwise. In this expression, λ is a regularization parameter that controls the strength of 

the spatial smoothness constraint, Δn is the index set for the spatial neighborhood of the nth 

voxel, and tn is a binary mask used to avoid fitting multidimensional correlation spectra to 

noise-only voxels of the image (tn = 1 if the nth voxel is inside the object, and otherwise tn = 

0). This is a simple convex optimization problem which we can solve globally using 

standard techniques. We obtained solutions using an in-house MATLAB program that 

implements an alternating directions method of multipliers algorithm, as described in our 

previous work [10].

3. RESULTS

We have performed extensive simulation and experimental testing of RR-CSI, but for 

brevity, only present two different illustrative experimental results. The following 

subsections describe RR-CSI of a small pumpkin and RR-CSI of an in vivo human brain.

3.1. Small Pumpkin

We acquired real RR-CSI data of a small pumpkin using an inversion recovery Carr-Purcell-

Meiboom-Gill (CPMG) sequence on a 3T human MRI system (Achieva; Philips Health-

care, Best, The Netherlands) with 2 mm × 2 mm in-plane resolution, 4 mm slice thickness, 

and TR = 5000 ms. For simultaneous T1 and T2 contrast encoding, we used every 

combination of 7 inversion times (TI = 0, 100, 200, 400, 700, 1000, and 2000 ms) and 15 

echo times (from TE = 7.5 ms to 217.5 ms in 15 ms increments) for a total of P = 105 

contrasts. A high-resolution (0.5 mm × 0.5 mm) image of the same slice was also acquired 

for reference.

For estimation, a dictionary K was constructed with Q = 10, 000 dictionary elements. 

Optimization was performed using λ = 0.01 and zero initialization.

Results are shown in Fig. 1. As can be seen in Fig. 1(b,c), we observe one strong peak and 

two weaker peaks in the integrated spectrum. By integrating these peaks, we can generate 

the spatial maps shown in Fig. 1(d). While there is no ground truth in this case, the 

compartments we have estimated are consistent with our knowledge about the anatomy of a 

pumpkin, and are also consistent with the high-resolution features we are able to see from 

the reference image. Due to space constraints, we have not shown spatially-varying spectra 

derived from our estimated spectroscopic image. However, these spatially varying spectra 

clearly identify the presence of partial voluming between these three compartments.

For comparison of our approach against 1D methods, we also performed two different kinds 

of 1D relaxation spectrum estimation. Specifically, 1D T1 relaxation spectra were estimated 

for each voxel from the seven different TIs at TE = 7.5 ms, and and 1D T2 relaxation spectra 

were estimated for each voxel from the fifteen different TEs. For improved results, the 1D 

spectroscopic images were both estimated using spatial constraints and the cost function 

from Eq. (3). Results are shown in Fig. 2. Note that the three spectral peaks that are clearly 

separated in 2D are not easily separated in either of the 1D cases. As a result, the 1D cases 

fail to successfully separate as many compartments as RR-CSI.
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3.2. In vivo human brain

In vivo human brain data was acquired using the same imaging protocol and sequence 

parameters from the pumpkin experiment, except that we did not use any data with TE=7.5 

ms. This resulted in a total of P = 98 contrast encodings. It is worth noting that this single-

slice RR-CSI dataset was acquired within 20 minutes, which is feasible for in vivo 
applications.

The spectroscopic image was estimated using the same reconstruction parameters as for the 

pumpkin, and results are shown in Fig. 3. In this case, we observed five resolved peaks. 

These five peaks closely match with anatomical expectations: component 1 seems to 

correspond to a part of white matter (WM); component 2 seems to correspond to a mixture 

of WM and gray matter (GM); component 3 seems to correspond to gray matter (GM); 

component 4 seems to correspond to cerebrospinal fluid (CSF); and component 5 resembles 

the myelin water compartment identified in previous literature [1]. However, it should be 

noted that the relaxation characteristics of the CSF-like component and the myelin water-

like component do not match with the literature values. This discrepancy should be 

expected, since our experiment design has not been optimized for these components. In 

particular, our experiment used a relatively short TR, meaning that the slowly-relaxing CSF 

component is unlikely to fully relax between excitations. In addition, we expect that our 

inversion times may be too coarsely sampled to accurately estimate the T1 parameter of 

myelin water. Nevertheless, we are still able to separate realistic-looking components that 

seem to correspond to CSF and myelin water. It is important to emphasize that our approach 

clearly separated out anatomical structures and revealed partial voluming of the associated 

structure, which is impossible with conventional 1D methods. Results from another slice of 

the same brain (not shown due to space constraints) are consistent with those from Fig. 3.

Importantly, the ability to identify 5 distinct compartments with RR-CSI is a substantial 

performance improvement over previous 1D approaches based on T2 spectra [1, 3] that 

usually only separate 2 or 3 compartments.

4. CONCLUSION

RR-CSI is a novel approach to imaging microstructure that uses high-dimensional contrast 

encoding together with high-dimensional spatial-spectral image reconstruction. In this paper, 

we described and evaluated RR-CSI, and demonstrated in vivo results for the first time. We 

believe that this approach reveals information that has not been easy accessible with 

traditional approaches, and has the potential to enable substantially more informative 

experiments in both basic research and clinical applications.
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Fig. 1: 
RR-CSI of the pumpkin. (a): An example image from the full data set (TI=0 ms, TE=7.5 

ms). (b): The average 2D RR-CSI spectrum (integrated over all voxels). (c): Three 

representative individual spectra plotted from different spatial locations. (d): (top) Spatial 

maps of the three peaks, (bottom-left) the composite image where each component is color-

coded (red: comp.1, green: comp.2, and blue: comp.3), and (bottom-right) the high-

resolution reference image.
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Fig. 2: 
Estimation results from (a) conventional 1D T1 relaxation encoding and (b) conventional 1D 

T2 relaxation encoding. Each figure shows (left) the estimated spectra integrated across all 

voxels, and (right) spatial maps of the integrated spectral peaks from the estimated 

spectroscopic image.
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Fig. 3: 
RR-CSI of the human brain. (a): An example image from the full data set (TI=0 ms, 

TE=22.5 ms). (b): The average 2D RR-CSI spectrum (integrated over all voxels). (c): Five 

representative individual spectra plotted from different spatial locations. (d): Spatial maps 

(represented as fractions so that they add to one) of the five peaks, along with the color-

coded composite image (red: comp.1, green: comp.2, blue: comp.3, yellow: comp.4, and 

purple: comp.5).
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