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ABSTRACT 
 
Magnetic resonance image (MRI) in high spatial resolution 
provides detailed anatomical information and is often 
necessary for accurate quantitative analysis. However, high 
spatial resolution typically comes at the expense of longer 
scan time, less spatial coverage, and lower signal to noise 
ratio (SNR). Single Image Super-Resolution (SISR), a 
technique aimed to restore high-resolution (HR) details from 
one single low-resolution (LR) input image, has been 
improved dramatically by recent breakthroughs in deep 
learning. In this paper, we introduce a new neural network 
architecture, 3D Densely Connected Super-Resolution 
Networks (DCSRN) to restore HR features of structural brain 
MR images. Through experiments on a dataset with 1,113 
subjects, we demonstrate that our network outperforms 
bicubic interpolation as well as other deep learning methods 
in restoring 4x resolution-reduced images. 
 

Index Terms— Super-resolution, MRI, deep learning, 
3D Neural Network, image enhancement 
 

1. INTRODUCTION 
 
Medical images in high spatial resolution (HR) produce 
abundant structural details, enabling accurate image analysis 
and quantitative measurement. However, high spatial 
resolution in MRI typically comes at the expense of longer 
scan time, less spatial coverage, and lower signal to noise 
ratio (SNR) [1]. If we could reconstruct a high-resolution 
(HR) image from a low-resolution (LR) input, we can 
potentially achieve larger spatial coverage, higher SNR and 
better spatial resolution in a shorter scan. A simplistic 
approach is to interpolate LR images into HR. However, 
interpolation methods fail to recover the loss of high-
frequency information like fine edges of objects. Another 
approach is to scan multiple LR images and combine them 
into a single HR image. Unfortunately, this is not robust to 
interscan motion, and is neither time- nor cost-optimal in 
practice. Therefore, a SISR [2] technique which needs only 
one LR scan to provide an HR output is an attractive approach 
to address this problem.  
    Before data-driven machine learning was widely used, 
most applications [3] of SISR took the form of an 
optimization problem to minimize the cost between observed 
LR image and the model estimation, typically with some form 
of regularization terms. However, those non-learning 
methods generally have a limitation that they require sound 

prior knowledge about the data representation. For instance, 
the use of a total variation regularization term implicitly 
assumes that the image should be piecewise constant, which 
does not always hold for images with abundant structural 
details.  
    In contrast, a learning-based method does not require the 
assumption of the data distribution but learns the prior 
information directly from a set of examples [4]. Recent state-
of-the-art methods with deep learning techniques have shown 
a great performance improvement on natural images. Among 
those approaches, Super-Resolution Convolutional Neural 
Networks (SRCNN) [5] and its faster version FSRCNN [6] 
have received substantial attention because of their simple 
network structure and high restoration accuracy.  
    However, these previous deep-learning approaches still 
have limitations. First, many medical images are 3D volumes, 
but 2D super-resolution networks like the original FSRCNN 
work slice-by-slice without taking advantage of continuous 
structures in 3D. A 3D model would be preferable, as it 
directly extracts 3D image features, considering objects 
across multiple slices. Second, FSRCNN stacks multiple 
convolutional neural networks. Direct conversion into 3D 
may result in a large number of parameters and thus faces 
challenges in memory allocation. Finally, its structure could 
also be further improved in terms of efficiency. 
    In this paper, we propose 3D Densely Connected Super-
Resolution Networks (DCSRN), derived from a recent 
development in neural networks, Densely Connected 
Convolutional Networks [7]. Experiments are performed on 
a large brain MRI dataset from the human connectome 
project (HCP) [8]. We show that in brain MRI SR, 3D neural 
networks outperformed their 2D counterparts, and that our 
3D-DCSRN also outperformed a previous method for 3D 
FSRCNN. In addition, in our study, the low-resolution image 
is created by truncating k-space instead of downsampling in 
the image domain, which more realistically represents the 
acquisition of low-resolution MRI scans.  
 

2. SUPER-RESOLUTION NEURAL NETWORKS 
 

2.1. Background 
 
As SISR is an estimation process in image space to turn LR 
images 𝑌  into ground truth HR images 𝑋,  the relation 
between 𝑋 and 𝑌 can be interpreted as: 
 

𝑌	 = 	𝑓(𝑋)               (1) 



 
where the 𝑓is an arbitrary continuous transformation function 
that downgrades the image 𝑋. The SR process will be to find 
some 𝑔 ∙ ≈ 𝑓,- ∙ , where 𝑓,- is the inverse mapping 
function of 𝑓, to reconstruct an HR image as: 
 

𝑋	 = 	𝑔 𝑌 = 	𝑓,-(𝑌) 	+ 𝑟       (2) 
 
where 𝑟 is the reconstruction residual.  
    A learning-based SR typically has three steps to restore 𝑋: 
1) extract image features from 𝑌, 2) map the feature vector to 
a feature space, and 3) reconstruct 𝑋 from the feature space.  
   It has been shown that convolutional neural networks [9] 
can handle those operations naturally [5]. By minimizing the 
difference between reconstructed images and ground truth 
images during the training process, the model learns the 
transformation from LR to HR by those three steps. 
 
2.2. Proposed 3D Densely Connected Super-Resolution 
Networks (DCSRN) 
 
Though FSRCNN has a significant improvement in speed 
over SRCNN, recent studies [7, 10] showed that more 
sophisticated network structures with skip connections and 
layer reusing benefit not only performance and speed, but 
also reduces training time. Inspired by the Densely 
Connected Network (DenseNet) used in object recognition 
[7], we propose a new SR network, referred to as DCSRN. 
There are three major benefits to use DCSRN: 1) faster 
training—each path in the proposed network is much shorter, 
so back-propagation is more efficient; 2) a light-weight 
model—thanks to weight sharing, the model is small and 
efficient; 3) less overfitting during training—the number of 
parameters is greatly reduced and features are reused heavily, 
so it is difficult for overfitting to occur. The network structure 
of DCSRN is shown in Fig. 1.  Patches are extracted from the 
whole 3D image and fed into the network. A convolutional 
layer with kernel size of 3 and filter number of 2k is applied 
to the input image before a densely-connected block with 4 
units, each which has a batch normalization layer and an 
exponential linear units (ELUs) activation followed by a conv 
layer with k filters. A conv layer is used to provide final SR 
output. 

 
2.3. 3D model vs 2D model 
 
In many studies, a 2D model was directly applied to 3D 
medical images slice-by-slice or combining results from 
coronal, axial, and sagittal views. However, as medical 
images carry structural information in 3D form, a 3D model 
is a natural way to learn richer knowledge. For example, a 
small blood vessel may cast its edge to a neighboring slice; 
when a 2D SR model processes the adjacent slice, it might be 
difficult to determine whether this small fluctuation is part of 
the vessel or just the noise, potentially resulting in noise 
enhancement in the output.  

 
3. EXPERIMENTS 

 
3.1. Evaluation Setting  
 
For evaluation, we create LR images from the HR images, 
and the SR results from LR images are then compared with 
the HR ground truth to evaluate the performance.   
    Unlike previous SR approaches [2,11] where the LR 
images were created in image domain through a Gaussian 
blurring followed by shrinking image size in all dimensions, 
we obtained LR images by: 1) applying the FFT to HR 
images, converting the original image into k-space data; 2) 
degrading the resolution by zeroing the outer part of the 3D 
k-space along two axes representing two MR phase encoding 
directions; 3) applying the inverse FFT. This process results 
in LR images at the same image size as the HR images, 
avoiding checkerboard artifacts [12]. This mimics the real 
image acquisition process where a low-resolution MRI is 
scanned by reducing acquisition lines in phase and slice 
encoding directions. The missing data is in k-space, thus the 
blurring pattern is different from simply reducing image size 
in the image domain. Our process more faithfully follows the 
real LR MRI acquisition process.  
 
3.2. Dataset 
 
In a previous experiment with a small dataset of 21 images 
[11], 3D SRCNN demonstrated superior performance against 

 
Figure 1. Framework of the proposed 3D Densely Connected Super-Resolution Networks (DCSRN). 



the 2D version. In order to better demonstrate the network’s 
generalization, we chose a large publicly accessible brain 
MRI database acquired from multiple centers, the human 
connectome project [8], and employ 1113 subjects’ brain 
T1w structural images. These 3D MPRAGE images were 
obtained from Siemens 3T platforms using a 32-channel head 
coil. The matrix size is 320x320x256.  The spatial resolution 
is 0.7 mm isotropic. The whole dataset was randomly split 
into 7:1:1:1 ratio as 780 training, 111 validation for 
optimizing network weights, 111 evaluation for choosing 
hyperparameters, and 111 test samples for unbiasedly 
performance checking. The original images were treated as 
the ground-truth HR images, and then degraded to LR ones, 
lowering the spatial resolution by a factor of 2 in each phase 
encoding direction (for a total factor of 4). 
 
3.3. Patching, Merging and Data Augmentation 
 
Each subject’s 3D image was split into 64x64x64 cubes. The 
locations of the cubes were randomly selected in each 
training step within the whole 3D image volume, acting as 
random translation for data augmentation. To compare 
against 2D networks, each 3D cube was again split into 64 
2D patches. A batch of two 3D cubes were fed into the 
network during training. In the testing phase, the whole SR 

volumes were merged by averaging the model’s SR output 
cubes in a 3D sliding window manner. In each sliding step, 
the window shifted by half of the cube size.  
 
3.4. Training 
 
We implemented all the models in Tensorflow [13]. For the 
proposed DCSRN, the densely-connected block has four 
3x3x3 convolutional layers with 48 filters as the first layer 
output in a growth rate (k) of 24, which gave us the best 
results in this work. For the comparison methods, we selected 
the hyperparameter according to [6] for 2D FSRCNN (Table 
1). We kept the same layer settings but extended all 2D 
convolution to 3D for the 3D-FSRCNN.  
    Adam optimizer with a learning rate 10-5 was used to 
minimize the L2 loss (mean squared error) between the 
network output SR images and the corresponding HR ground 
truth during training. All models were trained from scratch on 
a workstation with a Nvidia GTX 1080 TI GPU for 
approximately 72 hours, after which little improvement was 
observed. 
    Our program saved the model checkpoint with best 
validation loss during training, and applied that model to the 
test set for performance analysis. 

 
Figure 2. One randomly selected sample, zoom-ins of the red region are shown alongside and SSIMs of this image are on the top. A 
small vessel in the yellow circle is blurred out in (b) and (c), partially recovered in (d) and (e), and DCSRN (f) preserves more details. 

		 Nearest	Neighbor	 Bicubic	Interpolation	 2D	FSRCNN	 3D	FSRCNN	 3D	DCSRN	
		 SSIM	 PSNR	 NRMSE	 SSIM	 PSNR	 NRMSE	 SSIM	 PSNR	 NRMSE	 SSIM	 PSNR	 NRMSE	 SSIM	 PSNR	 NRMSE	
mean	 0.8131	 28.39	 0.2049	 0.8382	 29.21	 0.1868	 0.8836	 31.28	 0.1467	 0.9166	 33.86	 0.1093	 0.9312	 35.05	 0.0954	
std	 0.0086	 0.85	 0.0086	 0.0079	 0.86	 0.0082	 0.0075	 0.78	 0.0048	 0.0066	 0.79	 0.0041	 0.0064	 0.84	 0.0041	
min	 0.7873	 26.54	 0.1852	 0.8145	 27.36	 0.1674	 0.8635	 29.75	 0.1340	 0.8997	 32.05	 0.0998	 0.9156	 32.97	 0.0885	
median	 0.8134	 28.30	 0.2033	 0.8386	 29.10	 0.1854	 0.8842	 31.35	 0.1471	 0.9175	 33.88	 0.1085	 0.9320	 35.05	 0.0944	
max	 0.8318	 30.54	 0.2263	 0.8542	 31.32	 0.2083	 0.9005	 33.57	 0.1593	 0.9315	 36.18	 0.1227	 0.9468	 37.57	 0.1090	

Table 1. The results of SSIM, PSNR and normalized root mean squared error for a downgrade factor of 2x2 between nearest-neighbor, 
bicubic interpolation, 2D FSRCNN, 3D FSRCNN and 3D DCSRN. 3D DCSRN has highest average similarity scores in SSIM and 
PSNR and lowest mean voxel-wise intensity difference to ground truth HR images. 
 



 
4. RESULTS 

 
The results from different methods of a sample case are 
shown in Fig 2. To quantitatively measure the results, we 
computed three image metrics: Structural Similarity Index 
(SSIM) [14], peak signal to noise ratio (PSNR) and 
normalized root mean squared error (NRMSE), between the 
SR images and the HR ground truth. 
  The comparison methods were nearest neighbor up-
sampling, bicubic interpolation, and three deep learning 
models: 2D-FSRCNN, 3D-FSRCNN, and DCSRN. Table 1 
provides a summary of quantitative analysis. Figure 3 is the 
boxplot of the results. In all 3 metrics, all deep learning 
models show better performance than simple interpolation 
methods by a large margin. Additionally, 3D FSRCNN 
outperforms 2D FSRCNN, and our 3D DCSRN has the best 
performance over all (p<0.01 from two-sample t-tests). 
      In terms of the speed, we observed that DCSRN trained 
4x faster than 3D FSRCNN. In testing, to process a patient’s 
3D image set with patch size 64x64x64, DCSRN took 23.31s, 
2D FSRCNN took 35.52s, and 3D FSRCNN took 63.95s. The 
proposed DCSRN was the fastest among them. 
 

5. CONCLUSION 
 
In this paper, we demonstrated a novel convolutional neural 
network DCSRN for SISR of 3D brain MRI. Although it is 
possible that hyperparameters of the model may affect the 
performance, with the limited time and resource, we could 
not explore the combination in exhaustively. A study on 
hyperparameters searching on various structures will be one 
potential future work. However, the results showed that 
compared with popular interpolation and previous deep 
learning methods, the new model produced significantly 
better quality SR images and did so more efficiently.  
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Figure 3. Boxplot of results of SSIM, PSNR and NRMSE between different methods. DCSRN scores the best in all three metrics. 


