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Abstract

White matter (WM) lesion identification and segmentation has proved of clinical importance for 

diagnosis, treatment and neurological outcomes. Convolutional neural networks (CNN) have 

demonstrated their success for large lesion load segmentation, but are not sensitive to small deep 

WM and sub-cortical lesion segmentation. We propose to use multi-scale and supervised fully 

convolutional networks (FCN) to segment small WM lesions in 22 anemic patients. The multiple 

scales enable us to identify the small lesions while reducing many false alarms, and the multi-

supervised scheme allows a better management of the unbalanced data. Compared to a single FCN 

(Dice score ~0.31), the performance on the testing dataset of our proposed networks achieved a 

Dice score of 0.78.

Index Terms
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1. INTRODUCTION

White matter (WM) lesions are prevalent in neurological disorders such as multiple sclerosis 

(MS), small vessel disease (SVD), anemia, and in the normal aging population [1]. Since 

identifying and quantitatively measuring white matter lesions is clinically beneficial to 
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prevent disease progression and for evaluation of treatment efficacy, it is imperative to 

accurately detect and quantify them. It has been shown that accurate early white matter 

lesion evaluation could reduce cognitive decline in patients with heart disease [2] and overt 

stroke in anemia patients [3].

Fluid-attenuated inversion recovery (FLAIR) MR images are widely used to observe white 

matter lesions, which appear as higher signal intensities in voxels, and are referred to as 

white matter hyperintensities (WMH). Manual segmentation is time-consuming and subject 

to intra- and inter-subject variablity, especially for small lesion loads (< 5ml) [4]. In recent 

years, many semi- and fully automated algorithms have been developed by either requiring a 

threshold to cluster WMHs (unsupervised methods), or using hand-crafted features 

(supervised methods) [1]. However, the accuracy of these methods relies on the training 

dataset, which may need to be impracticaly large, or may not be universally applicable due 

to the heterogeneous nature of WMH [5]. In addition, most of the existing learning-based 

methods perform well on large lesion segmentation, but are not sensitive to the detection of 

small lesions [6], which are particularly prevalent in some populations such as normal aging 

and anemic groups.

Convolutional neural networks (CNNs) are the most popular deep neural network (DNN) 

architectures [7]. They have been used to automatically extract brain, to separate tissue types 

[8, 9], and for tumor and WMH segmentation [10] in MRI. While most biomedical 

segmentation applications were reported in patients with relatively large lesion loads (MS, 

dementia, et. al.), few have been applied to small lesions in deep white matter (DWM) and 

sub-cortical WM. Therefore, DWM lesion segmentation using machine learning or deep 

learning methods is quite challenging.

We propose to use orchestral fully convolutional networks (OFCN), i.e., multi-scale and 

supervised networks, to segment DWM and sub-cortical WM lesions in 22 anemic patients. 

The architecture parallels three fully convolutional networks (FCN) and fuses predicted 

probability maps to yield a final segmented result.

2. METHODS

2.1. Data description

The MRI images were acquired according to Good Clinical Practice. Informed consent was 

signed from all participants under a protocol approved by the Institutional Review Board at 

Children’s Hospital of Los Angeles. After excluding cystic lesions and severe CSF flow 

artifacts found on FLAIR images, our dataset consisted of 22 anemic patients (age=22.4 

± 4.0, 14F, 8M). MRI examinations were performed on a Philips Achieva 3 Tesla magnet 

using an 8-element head coil. T1-weighted images were acquired for co-registration, and 3D 

T2-weighted FLAIR images were collected using the following parameters: TE/TR= 

250/4800 ms, FOV 256 × 256 × 123, resolution 1 × 1 × 1.3 mm.

2.2. Preprocessing and ground truth segmentation

Firstly, we linearly and affinely registered all FLAIR images to the 1mm3 Montreal 

Neurological Institute (MNI) atlas using FLIRT and FNIRT [11]. Then we performed brain 
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extraction and bias field correction using BrainSuite. Since inhomogeneous magnetic fields 

causes intensity variations in different patients, we histogram matched to a randomly 

selected patient using MATLAB® Image Processing Toolbox™ before data normalization. 

Lastly, all the intensity values were normalized by rescaling to the range of [0, 1].

To generate the ground truth (GT), we semi-manually segmented lesions using an in-house 

MATLAB-based toolbox previously published [12], by two on-site raters in consensus (one 

Ph.D student with a biomedical imaging background and one medical graduate student). The 

number and location of each WMH was confirmed by an experienced board-certificated 

neuroradiologist. When the boundary of the lesion did not agree with the raters’consensus, 

we used ITK-SNAP to delineate it voxel-by-voxel.

2.3. Orchestral fully convolutional networks

FCN has been widely used in computer vision and achieved breakthrough performance in 

image semantic segmentation. The key concept of FCN is the use of a deconvolutional layer, 

which is implemented by upsampling and transpose convolution, instead of a fully 

connected layer, so that the network architecture is transformed into fully convolutional 

form. Simultaneously, each deconvolutional output is augmented by concatenating the 

corresponding convolutional output through a skip architecture to generate the segmentation 

map. Due to its architecture without fully connected layers, FCN can speed up the 

segmentation and learn the object’s shape robustly without restricting the input image size 

[13].

Nonetheless, there are some limitations for FCN to identify the boundaries of small lesions. 

First of all, because of the downsampling and upsampling in FCN, the feature score maps in 

hidden layers are sparser than the original inputs [14], which causes a loss of image details. 

It is difficult for FCN to perform an accurate segmentation that requires more contour 

details. Furthermore, FCN generates the segmentation results through transpose convolution, 

which may cause the misclassification of voxels in the regions containing small objects [14], 

therefore FCN is not sensitive to classify data with an unbalanced class ratio, which is very 

common in small lesion segmentation. Hence, traditional FCN usually performs poorly in 

small lesion segmentation.

A popular alternative to achieve accurate segmentation is through patch-wise sampling the 

original image so that the networks train and predict each voxel based on the local patch 

formed by that voxel with its neighborhood [15]. However, due to the repetitive computation 

for each voxel and its neighborhood during patch sampling, the computational complexity of 

the model significantly increases. Also, the patch size could limit the segmentation 

performance. While smaller patch sizes may lose contextual information, larger patch sizes 

may decrease accuracy at the voxel level [16].

To conquer such limitations, we present an advanced deep neural network based on multiple 

scale parallel fully convolutional networks.

• Unbalanced dataset and multiple scale sampling The total number of voxels 

for a high-resolution 3D FLAIR image is more than 7 million, while the one for 
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the small lesions per patient is around 300-700. Hence, in our problem, we face 

an extremely unbalanced dataset that has a ratio of lesion and non-lesion which 

is nearly 14,000:1. In addition, a large enough number of FLAIR images 

acquired with the same imaging protocol and in the same cohort is not always 

available. To overcome these problems, we sample original images into non-

overlapping 3D patches, which require less computation than overlapping 

patches, and train patches so that the inner patch class ratio is more balanced and 

the training set is large enough for valid training. Also, we choose to use multiple 

patch sizes to train the model and fuse the results to correct the bias caused by a 

single patch size.

• Network architecture The architecture of the OFCN is shown in Fig. 1. The 

system consists of three parallel FCNs, which process 3D patches of size 323, 

163, and 83 respectively. For each FCN (Fig. 1. A), it contains 15 convolutional 

layers, 3 max-pooling layers, and 3 deconvolutional (upsampling and transpose 

convolution, i.e., up-conv) layers. The details of each layer, including filter sizes, 

feature channels, and activation functions are shown in Fig. 1 B. All the FCNs 

are supervised by the ground truth (GT in Fig. 1, dashed line as inputs) to 

generate three single FCN pre-segmented results (PS Map1, 2 and 3). Lastly, 

high complexity models may cause overfitting, while a simple majority vote 

considering all the pre-segmented maps as having equal weights may be less 

accurate. Instead, we applied the Adaboost algorithm [17] with classification and 

regression tree (CART) [17] as the weak learners supervised by the GT in the 

fusion center. This will recursively split the potential lesion voxels (the union of 

the three pre-segmented maps) into the lesion and false alarm ones, based on the 

features extracted from the three pre-segmented maps, to yield the final 

segmentation results.

• Training procedure To train the network model, we used a stochastic gradient 

descent algorithm [18] to optimize the Dice loss function, with a batch size of 32 

and learning rate of 0.1. We used a rectified linear unit (ReLU) function as the 

nonlinear activation function for each neuron, to prevent the vanishing gradient 

issue [19]. The initialization for the weights in each convolutional kernel used a 

random Gaussian distributionwhich has a zero mean and standard deviation of 

1/m, where m is the connection number of each layer, so that the model can 

converge faster. We divided our dataset (22 samples) into 5,544, 44,352, and 3.55 

million 3D patches based on different patch sizes, respectively, for training and 

testing. We used leave-one-out strategy and trained our model for 1000 epochs, 

where the system converged, and then selected the best performance model 

according to validation sets. The network models were implemented in Python 

with the TensorFlow and Keras libraries. For the fusion center, the probabilities 

of the potential lesion voxels and their neighborhoods in three pre-segmented 

maps were used as features to train the boosting model.
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2.4. Evaluations

To evaluate the performance of our OFCN system, we compared it to the single FCN 

(SFCN) model using three different patch sizes (SFCN-8, SFCN-16, and SFCN-32). In order 

to calculate the overlap between two segmentations, we used the Dice similarity coefficient 

(DSC) and average symmetric surface distance (ASSD, in mm) [20]. In addition, to compare 

lesion catch rate and false alarm rate, we also added recall and precision to the evaluation 

metrics to measure the proportion of true positives in the ground truth, and the proportion of 

true positives in the prediction, respectively.

3. RESULTS

Table 1 summarizes the performance of the individual FCN and OFCN. The sensitivity to 

lesion detection was excellent across all three patch sizes. In general, the DSC and precision 

increases while the ASSD dimension decreases with increasing patch size. Fig. 2 shows the 

comparison of the segmentation results from each of the models. Fig. 2 (c)-(e) indicate that 

reducing the patch size enhances the contour details of segmentation, but causes more false 

alarms. Our OFCN (Fig. 2 (f)) has less false alarms but better segmentation contours.

4. DISCUSSION

From the observation of sensitivity in Table 1, all the networks were sensitive to small 

lesions. Keeping high lesion catch rate as baseline, the similarity between segmentation and 

ground truth reflected the accuracy of segmentation. By comparing the SFCN results of 

different patch sizes in Table 1, larger patch sizes performed better than smaller patch sizes 

(DSC and precision decreased while ASSD increased), because more contextual information 

is included to correct for the false alarms caused by misclassification, due to the mixture of 

the tissue types or brain boundary. However, from Fig. 2 (c)-(e), it can be observed that 

smaller patch sizes had a higher accuracy to catch the lesion boundary. Over all, OFCN 

performed better than SFCN, because the orchestral model was more able to remove the 

false alarms based on the larger patch size models and corrected the contour bias of the 

smaller patch size models.

In a review of the literature [1], a DSC of 0.7 or higher is usually considered a good 

segmentation method. On the other hand, the comparisons of ASSD are not always valid, as 

different dataset and different GT segmentation were used for evaluation [20]. For 

comparison, we also tested the weighted cross entropy as loss function to account for the 

unbalanced data. However, there was no significant difference compared to our method. Our 

proposed OFCN for small lesion segmentation was able to achieve a DSC of 0.78. However, 

our method is not sensitive to the hyperintensities arised by CSF pulsatile flow artifact, or 

periventricular WMHs, due to the lack of location prior knowledge.

In conclusion, OFCN is capable of segmenting small WM lesions with a DSC of 0.78, while 

future test on different types of WM lesions in more diverse locations may help to further 

validate our proposed system. Scanning for this project is ongoing, and we will add more 

subjects as they become available to improve our validation.
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Fig. 1. 
OFCN architecture: panel A encompasses three FCNs in parallel, and panel B represents the 

detail of the architecture of one single FCN in panel A. The FCNs are supervised by the 

ground truth (GT in Fig. 1, dashed line as inputs) to generate each of the pre-segmented 

maps (PS Map 1, 2, and 3). The fusion center combines all the pre-segmented maps based 

on the learning weights and threshold, also supervised by GT, to yield the final segmentation 

results.
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Fig. 2. 
(a): T2-FLAIR image; (b): GT; (c)-(e): Segmentation of SFCN32, 16 and 8; (f): 

Segmentation of OFCN. The blue arrows point to the false alarms.
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Table 1

Evaluation results for 4 different architectures (All the metrics are reported as the average of all samples)

DSC ASSD (mm) Recall Precision

SFCN-32 0.70 11.0 0.90 0.61

SFCN-16 0.48 14.4 0.86 0.36

SFCN-8 0.16 17.1 0.90 0.09

OFCN 0.78 6.4 0.86 0.73
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