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Abstract

The early postnatal period witnesses rapid and dynamic brain development. Understanding the 

cognitive development patterns can help identify various disorders at early ages of life and is 

essential for the health and well-being of children. This inspires us to investigate the relation 

between cognitive ability and the cerebral cortex by exploiting brain images in a longitudinal 

study. Specifically, we aim to predict the infant brain development status based on the 

morphological features of the cerebral cortex. For this goal, we introduce a multi-view multi-task 
learning approach to dexterously explore complementary information from different time points 

and handle the missing data simultaneously. Specifically, we establish a novel model termed as 

Latent Partial Multi-view Representation Learning. The approach regards data of different time 

points as different views, and constructs a latent representation to capture the complementary 

underlying information from different and even incomplete time points. It uncovers the latent 

representation that can be jointly used to learn the prediction model. This formulation elegantly 

explores the complementarity, effectively reduces the redundancy of different views, and improves 

the accuracy of prediction. The minimization problem is solved by the Alternating Direction 

Method of Multipliers (ADMM). Experimental results on real data validate the proposed method.

Index Terms

Infant brain development; Longitudinal analysis; Cognitive ability; Multi-view learning

1. INTRODUCTION

Exploring the quantitative relationship between the cognitive behavior scores and the brain 

development status during childhood period is of great importance for understanding the 

cognitive ability development at early ages. Although it is very important for health and 

well-being of children, the related works for this task are scarce, and only recently 

researchers started to associate brain development measures with risks of autism [1]. In this 

paper, we build quantitative mappings between five essential cognitive scores [2] (i.e., visual 

reception scale (VRS), fine motor scale (FMS), receptive language scale (RLS), expressive 

language scale (ELS), and early learning composite (ELC)) and the longitudinal 
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morphological features of the cerebral cortex. The challenges of such longitudinal infant 

study would lie in the following factors: (1) the samples are often very limited (i.e., Small- 

Sample-Size (SSS) problem), due to novelty of such studies; (2) missing data at certain time 

points are unavoidable and even very serious in longitudinal studies due to various reasons 

(e.g., no show-up at certain time points or dropouts) [3]; (3) unlike single output regression, 

our problem comprises multiple outputs that are naturally correlated.

The missing data issue is itself a key challenge, and, to address this, one straightforward 

approach is to learn one model based on the available data at each time point and then 

integrate the outputs of these models. To exploit multiple data sources, some improved 

methods [4, 5] further manually group samples according to the availability of data source, 

and then learn one model for each group. However, in both of these types of approaches, the 

missing data contributes to less effective usage of the partly available data, making SSS 

problem even more serious. In addition, the latter approach [4] will be rather complex with 

the increase in the number of data sources. Matrix completion methods [6, 7] usually devote 

themselves to recover missing values with a low-rank constraint. To be able to utilize the 

low-rank assumption, these approaches assume that the data is uniformly and randomly 

missing, which is not the case for our application of longitudinal early brain development 

study.

The longitudinal MRI data comprises multiple data sources from multiple time points that 

describe subjects from multiple views. Note that, for each time point, the data corresponding 

to a subset of subjects is missing, as shown in Fig. 1. To build the relation between the 

incomplete multi-view data and multiple cognitive scores, we propose a novel partial multi-

view multi-task regression method, termed as Latent Partial Multi-view Representation 
Learning. Our model seeks to reconstruct a comprehensive and compact latent 

representation for each subject, from the observed data at multiple time points. Then, a 

prediction model is learned based on the inferred latent representation, as shown in Fig. 2. 

The main advantages of our model include: 1) Unlike most existing multi-view methods [8, 

9] that learn models directly on the original noisy features, our model elegantly exploits the 

complementarity among different time points and reduces effectively the redundancy of the 

learned latent representations. 2) Our regression model is learned based on all N subjects, 

while existing methods [4, 5] learn multiple regression models based on different subsets of 

subjects, which is not applicable for dealing with SSS problem. The optimization of the 

proposed method is conducted by the Alternating Direction Method of Multipliers (ADMM) 

[10].

2. MATERIAL AND PREPROCESSING

Material—In our study, the T1- and T2-weighted MR images from 23 infant subjects at 9 

different time points (i.e., 0, 3, 6, 9, 12, 18, 24, 36 and 48 months) are collected. Some 

subjects have not shown-up for scans at certain time points, which causes the missing data 

issue, as illustrated in Fig. 1. Five of the Mullen behavior scores [2], i.e., Visual Reception 

Scale (VRS), Fine Motor Scale (FMS), Receptive Language Scale (RLS), Expressive 

Language Scale (ELS), and Early Learning Composite (ELC) are measured for each subject 
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at 48 months. Note that the fifth score (i.e., ELC) can be interpreted as the composite of the 

first four scores.

Preprocessing & Features—As mentioned before, our goal is to predict five behavior 

scores as early as possible in the early years of life. As studied in the literature [11, 1], 

morphological features from the cerebral cortex correlate with such behavioural 

measurements. To get the morphological features of cerebral cortex, the cerebral cortical 

surface is built following the pipeline in [12]. Then, at each vertex of the cerebral cortical 

surface, 7 measurements of the morphological properties are computed, i.e., cortical 

thickness, local gyrification index, mean curvature, vertex volume, sulcal depth measured in 

Euclidean distance, sulcal depth measured in string distance, and normalized area of the 

local vertex [13, 14]. Next, we register the FreeSurfer parcellation atlas [12] onto each 

surface to get the individual parcellation, after which for each Region- Of-Interest (ROI) of 

the FreeSurfer parcellation, the average of the above 7 measurements can be obtained. For 

the entire cerebral cortex, the FreeSurfer parcellation includes 70 anatomical meaningful 

ROIs [12], and for each ROI we can compute 7 mean morphological measurements from all 

the vertices within the ROIs. Therefore, totally, for each subject at one time point with 

available MRI data, a 490-dimensional feature vector can be obtained.

3. MODEL

In this section, we introduce a novel multi-view multi-task learning method, which 

overcomes the limitation of discarding or completing incomplete data in advance, and thus 

could fully take advantages of all the observed data based on the latent multi-view 

representation for each subject.

3.1. Latent Partial Multi-view Representation Learning

We denote the multiple-time-point data as {X1, …, XT; Y}, where Xt ∈ ℝD×N is the data 

matrix at the tth time point and Y ∈ ℝC×N is the score matrix. In our model, we formulate 

the learning task as a multi-task (C scores) multi-view learning problem with each view 

comprised by data from one of the T time points. We aim to uncover the multi-view latent 

representation which holds the reconstructive ability for the data at different time points. 

Accordingly, the formulation is as follows:

minH ∑
t = 1

T
𝒱( f t(H), Xt), (1)

where (·, ·) measures the reconstruction loss and ft(·) indicates the underlying mapping 

from the latent representation H to the observations at the tth time point, i.e., Xt, ∀t ∈ {1, …, 

T}, defined as:

𝒱( f t(H), Xt) = ‖( f t(H) − Xt)‖2, 1, (2)
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where ||·||2,1 is the ℓ2,1-norm of the residual encouraging the columns of the matrix to be zero. 

The underlying assumption is that the corruptions are sample-specific. Hence, this loss leads 

to a level of robustness against sample outliers. For the mapping ft(·), we employ linear 

projection in our model, which is a simple but effective technique especially for high-

dimensional data. Accordingly, we have:

𝒱( f t(H), Xt) = ‖PtH − Xt‖2, 1 . (3)

Based on the learned latent representation H from the multiple views, we can define the 

following multi-task regression term to predict our five scores:

minW ℒ(W, H, Y) = ‖WH − Y‖1 . (4)

This ℓ1 loss function leads to a robust loss [15]. Note that, W is learned based on all the N 
samples regardless of the missing status.

Since the tasks of interest themselves are highly interrelated, we introduce a well-known 

low-rank regularization [16] for the multi-task prediction model W as:

ℛ(W) = ‖W‖∗, (5)

where ||·||* is the matrix nuclear-norm. Putting these terms in a unified optimization problem, 

our objective function is induced as:

minΩ ‖WH − Y‖1 + α ∑
t = 1

T
ωt

r‖𝒫Ot
(PtH − Xt)‖2, 1

+ β‖W‖∗

s . t . ∑
t = 1

T
ωt = 1, ωt ≥ 0; Pt

⊤Pt = I, t = 1, ⋯, T .

(6)

For convenience, we denote Ω = {W, H, {Pt}t = 1
T , {ωt}t = 1

T } as the variable set to be 

optimized, and ω = (ω1, …, ωT) is the weight vector for different time points. α > 0 and β > 

0 encode the beliefs for reconstruction and task correlation, respectively. r > 1 for ωt is used 

to avoid a trivial solution that only considers one of the T time points and adjusts the 

complementarity of multiple time points [17]. The constraint Pt
⊤Pt = I is introduced, since 

without this constraint Pt can be pushed arbitrarily close to zero only by re-scaling Pt/s and 

Hs (s > 0) while preserving the same loss. Moreover, our model can be efficiently solved 

with the constraint (see Pt-subproblem in optimization part). ℘Ot (·) is a filter function to 

take care of the incomplete data for the tth time point. Let ot
s be an indicator variable 

showing the existence of data for subject s in time point t, i.e., ot
s = 1 if we have the data 
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available, and a very small scalar ε > 0 otherwise. ot will then be defined as the indicator 

vector from all indicator variables of training samples. Accordingly, we can define a 

diagonal matrix Ot = diag(ot), denoted as the filter matrix of the tth view, and hence ℘Ot(PtH 
− Xt) = (PtH − Xt)Ot. Note that ε > 0 is a small value to strictly guarantee the unique 

solution of the optimization problem (see H-subproblem in next subsection).

Optimization—Our objective function in Eq. (6) simultaneously seeks the latent 

representations from multiple views and learns the multi-task prediction model with respect 

to the latent representations. Since the objective function is not jointly convex with respect to 

all the variables Pt, H, W, we employ Augmented Lagrange Multiplier (ALM) with 

Alternating Direction Minimizing (ADM) strategy [10] and omit the detail of optimization 

due to space limitation.

4. EXPERIMENTS

We conduct experiments the real infant brain data to evaluate our method. The performance 

is measured with Root Mean Squared Error (RMSE). All the parameters are tuned in the set 

{10−3, 10−2, 0.1, 1, 10, 102, 103} through a nested leave-one-out cross-validation.

Performance with different number of time points—For the real infant brain data, 

we first run our method with the data from different number of time points. According to 

Table 1, our model could well leverage the data of different time points for promising 

performance. The improvements are not significant by incorporating the data at the 18th, 

24th and 36th month. One reason is that data at these time points are much more severely 

incomplete (for example, the missing rate at the 36th month is 14/23 ≈ 61%). The second 

reason can be related to the law of diminishing marginal return property.

Performance Comparison—We adopt two strategies to process the data to make them 

suitable for the existing multitask methods. Specifically, the first way is to complete the 

missing values simply with zero, and the second way is to fill the incomplete values with the 

averaged values of the observed ones (results for both strategies are included in the table, for 

all compared methods). We compare our model with the following methods: 1) NN (nearest 

neighbour); 2) MtJFS (Multi-Task Learning with Joint Feature Selection) [18]; 3) RMTL 

(Robust Multi-Task Feature Learning) [19]; 4) TrMTL (Trace-Norm Regularized Multi-Task 

Learning) [16]. From Table 2, it can be observed that simply filling the missing values with 

zero is not reasonable since the performance is usually relatively low.

Our method outperforms both TrMTL and RMTL that also constrain the prediction model to 

be low-rank, thus validating the power of learning the latent multi-view representation.

5. CONCLUSION

We have proposed to explore the relation between the cognitive ability and the cerebral 

cortex, and developed a novel multi-task multi-view regression model for the challenging 

problem. Based on the latent representation, our model dexterously addresses the challenge 

of learning with incomplete longitudinal data. We also introduced an optimization algorithm 
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for the proposed method and validate the effectiveness on real data. Since the problem is 

new, there are still valuable directions for the future research such as: (1) Nonlinear 

mappings (e.g., kernel technique) from latent representation to observations will be 

considered; (2) More data should be acquired for better performance.
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Fig. 1. 
Illustration of our infant brain image data set: The white blocks indicate the data available 

while the black blocks indicate missing data. We have 23 subjects with behavior scores, 

denoted by the red rectangle.
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Fig. 2. 
Illustration of Latent Partial Multi-view Representation Learning. Our model uncovers the 

comprehensive and discriminative latent representation (termed as latent atlas derived from 

medical image field) jointly from incomplete observations, based on which the multi-task (C 
scores) multiview (T time points) prediction model is learned.
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