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Abstract

Cortical thickness estimation performed in-vivo via magnetic resonance imaging (MRI) is an 

effective measure of brain atrophy in preclinical individuals at high risk for Alzheimer’s disease 

(AD). However, the high dimensionality of individual cortical thickness data coupled with small 

population samples make it challenging to perform cortical thickness feature selection for AD 

diagnosis and prognosis. Thus far, there are very few methods that can accurately predict future 

clinical scores using longitudinal cortical thickness measures. In this paper, we propose an 

unsupervised dictionary learning algorithm, termed Multi-task Sparse Screening (MSS) that 

produces improved results over previous methods within this problem domain. Specifically, we 

formulate and solve a multi-task problem using extracted top-p significant features from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) longitudinal data. Empirical studies on 

publicly available longitudinal data from ADNI dataset (N = 2797) demonstrate improved 

correlation coefficients and root mean square errors, when compared to other algorithms.

Index Terms
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1. INTRODUCTION

Cortical thickness estimation in magnetic resonance imaging (MRI) is an important research 

that has been applied to detect localized neuroanatomical differences. It has been carefully 

studied in Alzheimer’s Disease (AD) research as a potential imaging biomarker to evaluate 

AD risk, track AD progression, especially in preclinical individuals at high risk for AD (e.g. 

Mild Cognitive Impairment (MCI)), and facilitate early interventions [5]. A number of 

cortical thickness estimation methods have been developed [4, 11, 8, 17, 19] and they were 

well adopted in neuroimaging research. Despite advances in cortical thickness estimation 
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used to track symptomatic patients, there is still a lack of accurate and reliable brain imaging 

systems that can predict future clinical decline by analyzing longitudinal cortical thickness 

changes.

In neuroimaging research, there is also constant interest in building prediction models by 

analyzing global brain structural changes. A growing number of longitudinal preclinical or 

clinical AD imaging cohorts are under development. However, the main challenge in 

developing brain imaging systems to assist AD diagnosis and prognosis arises from the fact 

that the neuroimaging data dimensionality is intrinsically high while only a small number of 

samples are typically available. In this regard, feature selection is necessary to overcome this 

so-called “large p, small n” problem (p = 129, 600 in this paper). Feature selection reduces 

the feature dimension by selecting a subset of original variables [9], which are considered 

high quality training data. However, most current feature selection methods either demand 

careful parameter tuning or generate features that cannot be easily interpreted or even 

visualized or focus on classification problem [16]. Lasso [18] is one of the most popular 

feature selection methods due to its computational feasibility and amenability to theoretical 

analysis, but the Lasso estimator is not variable selection consistent if the irrepresentable 

condition fails [21], which means the correct sparse subset of the relevant variables cannot 

be identified asymptotically with large probability. In addition, over-fitting becomes one of 

the biggest concerns for building prediction models in brain imaging research. Recent 

developments from dictionary learning [14, 12, 13, 26] can offer valuable insights for above 

challenges. However, most existing works on dictionary learning focus on the prediction of a 

target outcome at a single time point [24, 22] or some region-of-interest [23, 25]. To address 

above challenges, a joint analysis of imaging features from multiple time points is expected 

to improve AD prediction performance.

In this paper, we propose a novel feature selection model integrated with an unsupervised 

framework that we termed as Multi-task Sparse Screening (MSS) algorithm. Our framework 

has two components. Stage one selects the top-p significant features by screening group 

Lasso based feature ranking [20], which is theoretically rigorous and more robust against 

data perturbation and less sensitive to the input parameters. The second stage is formulated 

as a multi-task dictionary learning problem which uses shared and individual dictionaries to 

encode both consistent and varying imaging features along longitudinal time points. We 

evaluate the proposed framework on brain images from Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu) (N = 2797) by analyzing longitudinal cortical 

thickness features to predict future cognitive scores, including the Mini Mental State 

Examination (MMSE) and Alzheimer’s Disease Assessment Scale cognitive subscale 

(ADAS-cog). Our experimental results outperform seven other methods and demonstrate the 

superiority of the proposed algorithm.

Our main contributions are threefold. First, we select top-p stability features by robust group 

Lasso screening from longitudinal cortical thickness features. Second, we consider the 

variance of subjects from different time points by an unsupervised dictionary learning 

method (i.e. MSS). To the best of our knowledge, it is the first learning model that unifies 

both sparse learning feature screening and multi-task learning with dictionary learning 

research for brain imaging analysis. Thirdly, in our empirical experiments on a relatively 
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large ADNI dataset (N = 2797), the proposed MSS achieved lower estimation errors and 

higher correlation coefficients when compared to seven other algorithms.

2. MULTI-TASK SPARSE SCREENING

Let X ∈ ℝd×n represents the cortical thickness features and y ∈ ℝn as a vector of n 
observations (responses) which are responses of the clinical scores (e.g., MMSE and ADAS-

cog) in regression problem. Because we use three time points (baseline, 6-month, 12-month) 

to predict the clinical scores at 24-month, we divide total d features into L groups, with dl as 

the number of features in group l. We use a data matrix, [X]l ∈ ℝ
dl × n

, to represent the 

predictors corresponding to the lth group, with corresponding coefficient vector [α]l. We 

assume that y and X have been normalized so that all variables have a mean of zero. With 

the group information available, the group Lasso problem [21] takes the form of solving the 

convex optimization problem as follows:

inf
α ∈ ℝd

1
2‖y − ∑

l − 1

L
[α]l[X]l‖

2

2
+ λ ∑

l = 1

L
dl‖[α]l‖2, (1)

where d = ∑l = 1
L dl. The regularization term accounts for groups of different sizes by the dl

terms. Eq. 1 behaves like the lasso [18] at the group level and it does reduce to lasso when 

the group sizes are all one. The optimal solution vector α of the group Lasso problem above 

is sparse at the group level but could be made sparse within a group by adding an L1 norm 

penalty term. we consider the non-zero elements as the important features because of the 

sparsity of the solution vector. Therefore we propose a group lasso screening process in this 

study to select the top p relevant features to the original ADNI dataset.

Algorithm 1

Multi-task Sparse Screening (MSS)

Input: Cortical thickness features from different time points {X1,…, XT} and corresponding response {y1,…,yT} where 

each Xt ∈ ℝ
d × nt and yt ∈ ℝ

nt

Output: Dictionaries and sparse codes

 1: for t = 1 to T do

 2: Set all the elements of Γ to be zero.

 3: for j = 1 to J do

 4: Optimize the Group Lasso with λj, Xt, yt, get the optimal solution a∗(λj).

 5:  For each group l in the feature space L, Γl = Γl + 1 if [a]l
∗(λ j) is not zero.

 6:  end for

 7:  Rank Γ in descending order, select the top p features from Xt to construct X∼t.

Zhang et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 8: end for

 9: for k = 1 to κ do

 10: for t = 1 to T do

 11: Get feature matrix X∼t.

 12: Update Dt
k:Dt

k = Φ.

 13: Update zt
k + 1 and index set It

k + 1 by CCD.

 14: Update the Dt and Dt by one step SGD.

 15:  Normalize Dt
k + 1 and Dt

k + 1 based on the index set It
k + 1

 16:  Update the shared dictionary Φ: Φ = Dt
k + 1

 17:  end for

 18: end for

We optimize the group Lasso screening in a sequence of parameter values λ0 > λ1 >… > λJ. 

For each parameter value λj where j ∈ (0, J), we obtain the optimal solution vector α∗(λj). 

Then we record the index of non-zero elements in the solution vector. We use an index factor 

Γ to record the frequency of non-zero elements in each α∗(λj) where Γ ∈ ℝL. For each 

group l in the feature space L, we increase the Γl by Γl = Γl + 1 when the elements of [a]l
∗(λ j)

are not equal to zero in the l group. Finally, after obtaining the index frequency Γ, we rank Γ 
by descend and select the top p frequent ones to construct the feature matrix X∼ from X.

After the screening procedure, to use features from different time points, we defined our 

multi-sparse learning model. Given the reconstructed feature matrices from T different time 

points: X∼1, X∼2, …, X∼T  our objective is to learn a set of sparse codes {Z1, Z2,…,ZT} for each 

time point where X∼t ∈ ℝ
p × nt, Zt ∈ ℝ

lt × nt and t ε{1,…,T} nt is the number of subjects for X∼t

and lt is the dimension of each sparse code in Zt. When employing sparse coding [15] to 

learn the sparse codes Zt by X∼tindividually, we obtain a set of dictionaries {D1,…, DT}but 

there are no correlations between the learned dictionaries. One solution is to construct the 

feature matrices X∼1, …X∼T  into one feature matrix X∼ to obtain the dictionary D. However, 

only one dictionary D is not enough to show the variation among subjects from different 

time points. To address this challenge, we integrate the idea of multi-task learning into 

sparse coding and propose a novel multi-task algorithm termed Multi-task Sparse Screening 

(MSS), to learn features from different time points.

For the feature matrix X∼tof a particular time point, MSS learns a dictionary Dt and sparse 

codes Zt. Dt is composed of two parts: Dt = [D, Dt] where D ∈ ℝp × l , and l + l t = lt. D is 
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common among all the learnt dictionaries while Dt is different from each other and only 

learnt from X∼t. Thus, objective function can be reformulated as follows:

min
D1, …, DT, Z1, …, ZT

∑
t = 1

T 1
2‖X∼t − [D, Dt]Zt‖F

2 + λ ∑
t = 1

T
‖Zt‖1:Dt ∈ Ψt, (2)

where D1 = ⋯ = DT, Ψt = Dt ∈ ℝ
p × lt: ∀ j ∈ 1, …, lt, ‖[Dt] j

‖
2

≤ 1  and [Dt] j
 is the jth column 

of Dt. ||·||F is Fibonacci norm and λ is the positive regularization parameter.

Fig. 1 illustrates the MSS process example with subjects of ADNI from three different time 

points: baseline, 6- and 12-months. We used different colors to denote different important 

features selected for different time slots. We initialize D by randomly selecting l  samples 

from feature matrices across different time points X∼1, …, X∼T , to construct it. For the 

individual part of each dictionary, we randomly select l  subjects from the corresponding 

matrix X∼t to construct Dt After initializing dictionary Dt for each time point, we set all the 

sparse code Zt to be zero at the beginning. The key steps of MSS are summarized in 

Algorithm 1.

In Algorithm 1, Φ represents the shared part of each dictionary. Then, we learn the sparse 

code zt
k + 1 from Zt by several steps of Cyclic Coordinate Descent (CCD) [2] where 

zt
k + 1 ∈ ℝ

lt. Then we use learnt sparse codes zt
k + 1to update the dictionary Dt

k + 1 and Dt
k + 1

by one step Stochastic Gradient Descent (SGD)[27]. Since zt
k + 1 is very sparse, we use the 

index set It
k + 1 to record the location of non-zero entries in zt

k + 1 to accelerate the update of 

sparse codes and dictionaries. Φ is updated at the end of kth iteration to ensure Dt
k + 1 is the 

same among all the dictionaries.

3. EXPERIMENT

We used all available brain longitudinal imaging data from ADNI. The subject demography 

table is shown in Table 1 including AD, MCI and Cognitively Unimpaired (CU). FreeSurfer 

[7] is adopted to compute the cortical thickness by deforming the white matter surface to 

pial surface and then measuring the deformation distance as the cortical thickness. 

FreeSurfer also produces a spherical parameterizations for each pial surface, which is used 

by weighted spherical harmonics representation (WSHR) [3] to register pial surfaces across 

subjects. WSHR fixes the Gibbs phenomenon (ringing effects) associated with the 

traditional Fourier descriptors and spherical harmonic representation by weighting the series 

expansion with exponential weights [3]. The exponential weights make the representation 

converges faster and reduces the amount of wiggling. We used WSHR to help create 

consistent features across subjects.
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3.1. Experiment setting

We set the columns of Dt to be 1000; 500 for the shared part and 500 for the individual part. 

We test whether MSS provides a statistically powerful clinical score prediction solution on 

three groups of experiments, including (1) The whole ADNI dataset N = 2797 (Whole), (2) 

AD and MCI, (3) MCI and CU. We did four times 5-fold cross validation to estimate the 

prediction power and report the averaged results. For each set of experiments, we selected 

5000 features along a sequence of λ values equally spaced on the linear scale of from 0.1 to 

1 and selected κ = 10 epochs. We used output of MSS as regressors and 2 clinical scores 

(MMSE and ADAS-cog) as responses in the Lasso regression. For testing, we used baseline 

dictionary to predict 24-months clinical scores since this dictionary also has the common 

dictionary already including baseline, 6-month and 12-month information. We evaluated the 

overall regression performance measures by using Correlation Coefficient (CC) and root 

Mean Square Error (rMSE)as employed in [28]. The definitions of two measures are as 

follows: rMSE(y, y) =
‖y − y‖2

2

n , and Corr(y, y) = cov(y, y)
σyσy

 where y is the ground truth of target 

at a single time point and ŷ is the corresponding prediction by a prediction model. cov(y, ŷ) 

is the covariance and σy and σŷ are the standard deviations. We release our source code of 

MSS on Github (https://github.com/zj00377/multi-task-sparse-screening).

To validate the effectiveness and accuracy of the proposed method, we consider three 

different conditions: 1) To show the validity of the feature screening strategy, we performed 

MSS without prior feature screening and we used MS-N to indicate that no feature screening 

was involved in. 2) Another concern is whether our MSS has better power to predict clinical 

decline or whether it has better performance than single task sparse coding (SSC). To this 

end, we compare the MSS with online dictionary learning [14] referred as SSC for single-

task based sparse coding. 3) We also want to know whether our group Lasso screening 

produces powerful features. We used SSC-N to refer single-task sparse coding without 

features screening. Besides, we compared with four methods: two single-task regression 

methods including ridge regression (Ridge) [10] and Lasso and two multi-task methods 

including Multi-Task Learning (MTL) [6] and L2,1 norm regularization with least square 

loss [1].

3.2. Experimental Results

Table 2 shows regression performance on three different experiments, we marked the first 

and second rank of all sets of the experiments. Firstly, we can see the feature selection on the 

high-dimensional features before learning sparse codes is important because the MS-N and 

SSC-N have poorer performance compared to MSS and SSC. Secondly, for sparse coding 

and the dictionary learning method, our MSS and MS-N have better performance than SSC 

and SSC-N, which shows our multi-task dictionary learning is superior to single-task 

dictionary learning methods. Meanwhile, comparing MS-N to two single-task regression 

methods, Lasso and Ridge, our proposed method also performs better in term of correlation 

and rMSE. Thirdly, our proposed method has better performance than two multi-task 

regression methods MTL and L21, which may be because we selected the top-p features and 

used the common and individual features of different time points for different tasks.
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Moreover, our proposed MSS method consistently outperformed the competing methods for 

the cases of different pairs of clinical labels. In the ADNI study, CU individuals and stable 

MCI patients (i.e. nondemented subjects) are less likely to have significant changes on the 

cognitive scores. We apply our models to the subgroup that consists of AD and MCI, MCI 

and CU patients, respectively, and the results show that our MSS still achieved the best 

results among all methods tested. For MCI vs. CU group, our method showed the best CC of 

0.80 on MMSE and 0.77 on ADAS-cog and best rMSE of 4.27 for MMSE and 6.52 on 

ADAS-cog. In AD vs. MCI group, our method achieved the best CC of 0.76 on MMSE and 

0.81 on ADAS-cog and best rMSE of 3.13 on MMSE and 6.51 on ADAS-cog. We show the 

scatter plots for the predicted values versus the actual values for MMSE and ADAS-Cog on 

the whole dataset in Fig. 2. We see the predicted values and actual clinical scores have a 

high correlation. Our experimental results validated the effectiveness of our MSS algorithm.

4. CONCLUSION AND FUTURE WORK

We propose a novel algorithm Multi-task Sparse Screening. Our extensive experimental 

results demonstrate that the proposed framework is more effective than seven other standard 

methods. In future work, we will investigate our algorithm on visualizing our selected 

cortical thickness features.

Acknowledgments

The research was supported in part by NIH (R21AG049216, RF1AG051710, R01EB025032 and U54EB020403) 
and NSF (DMS-1413417 and IIS-1421165).

References

1. Argyriou A, Evgeniou T, Pontil M. Convex multi-task feature learning. Machine Learning. 2008; 
73(3):243–272.

2. Canutescu AA, Dunbrack RL. Cyclic coordinate descent: A robotics algorithm for protein loop 
closure. Protein science. 2003; 12(5):963–972. [PubMed: 12717019] 

3. Chung MK, Dalton KM, Shen L, Evans AC, Davidson RJ. Weighted fourier series representation 
and its application to quantifying the amount of gray matter. Medical Imaging, IEEE Transactions 
on. 2007; 26(4):566–581.

4. Clarkson MJ, Cardoso MJ, Ridgway GR, Modat M, Leung KK, Rohrer JD, Fox NC, Ourselin S. A 
comparison of voxel and surface based cortical thickness estimation methods. Neuroimage. 2011; 
57(3):856–865. [PubMed: 21640841] 

5. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, Chupin M, Benali H, 
Colliot O. Automatic classification of patients with Alzheimer’s disease from structural MRI: a 
comparison of ten methods using the adni database. neuroimage. 2011; 56(2):766–781. [PubMed: 
20542124] 

6. Evgeniou T, , Pontil M. Proceedings of the tenth ACM SIGKDD international conference on 
Knowledge discovery and data mining ACM; 2004Regularized multi–task learning; 109117 

7. Fischl B. Freesurfer. Neuroimage. 2012; 62(2):774–781. [PubMed: 22248573] 

8. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance 
images. Proc Natl Acad Sci USA. Sep; 2000 97(20):11050–11055. [PubMed: 10984517] 

9. Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of machine learning 
research. Mar.2003 3:1157–1182.

10. Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems. 
Technometrics. 1970; 12(1):55–67.

Zhang et al. Page 7

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Jones SE, Buchbinder BR, Aharon I. Three-dimensional mapping of cortical thickness using 
Laplace’s equation. Hum Brain Mapp. Sep; 2000 11(1):12–32. [PubMed: 10997850] 

12. Lv J, Jiang X, Li X, Zhu D, Zhang S, Zhao S, Chen H, Zhang T, Hu X, Han J, Ye J, Guo L, Liu T. 
Holistic atlases of functional networks and interactions reveal reciprocal organizational 
architecture of cortical function. IEEE Trans Biomed Eng. Apr; 2015 62(4):1120–1131. [PubMed: 
25420254] 

13. Lv J, Lin B, Li Q, Zhang W, Zhao Y, Jiang X, Guo L, Han J, Hu X, Guo C, Ye J, Liu T. Task fMRI 
data analysis based on supervised stochastic coordinate coding. Med Image Anal. May.2017 38:1–
16. [PubMed: 28242473] 

14. Mairal J, Bach F, Ponce J, Sapiro G. Online dictionary learning for sparse coding. Proceedings of 
the 26th annual international conference on machine learning, pages. Acm;2009 :689–696.

15. Olshausen BA, Field DJ. Sparse coding with an overcomplete basis set: A strategy employed by 
v1? Vision research. 1997; 37(23):3311–3325. [PubMed: 9425546] 

16. Suk HI, Lee SW, Shen D, Initiative ADN, et al. Deep sparse multi-task learning for feature 
selection in alzheimers disease diagnosis. Brain Structure and Function. 2016; 221(5):2569–2587. 
[PubMed: 25993900] 

17. Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, 
Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TG, Cannon TD, Toga AW. 
Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. 
Neuroimage. 2004; 23(Suppl 1):2–18.

18. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 
Society Series B (Methodological). 1996:267–288.

19. Wang G, Wang Y. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey 
Matter Morphology Signatures. Neuroimage. Feb.2017 147:360–380. [PubMed: 28033566] 

20. Wang J, Zhou J, Wonka P, Ye J. Lasso screening rules via dual polytope projection. Advances in 
Neural Information Processing Systems. 2013:1070–1078.

21. Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the 
Royal Statistical Society: Series B (Statistical Methodology). 2006; 68(1):49–67.

22. Zhang J, , Fan Y, , Li Q, , Thompson PM, , Ye J, , Wang Y. Biomedical Imaging (ISBI 2017), 2017 
IEEE 14th International Symposium on IEEE; 2017Empowering cortical thickness measures in 
clinical diagnosis of alzheimer’s disease with spherical sparse coding; 446450 

23. Zhang J, , Shi J, , Stonnington C, , Li Q, , Gutman BA, , Chen K, , Reiman EM, , Caselli R, , 
Thompson PM, , Ye J. , et al. MICCAI Springer; 2016Hyperbolic space sparse coding with its 
application on prediction of Alzheimer’s disease in mild cognitive impairment; 326334 

24. Zhang J, Stonnington C, Li Q, Shi J, Bauer RJ III, Gutman BA, Chen K, Reiman EM, Thompson 
PM, Ye J, Wang Y. Applying sparse coding to surface multivariate tensor-based morphometry to 
predict future cognitive decline. IEEE International Symposium on BIOMEDICAL IMAGING: 
From Nano to Macro(ISBI) 2016. 2016

25. Zhang Jea. Patch-based sparse coding and multivariate surface morphometry for predicting 
amnestic mild cognitive impairment and alzheimers disease in cognitively unimpaired individuals. 
Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2016; 12(7):947.

26. Zhang Q, Li B. Discriminative k-svd for dictionary learning in face recognition. 2010 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition. Jun.2010 :2691–
2698.

27. Zhang T. Proceedings of the twenty-first international conference on Machine learning Vol. 116. 
ACM; 2004Solving large scale linear prediction problems using stochastic gradient descent 
algorithms. 

28. Zhou J, Liu J, Narayan VA, Ye J. Modeling disease progression via multi-task learning. 
Neuroimage. Sep.2013 78:233–248. [PubMed: 23583359] 

Zhang et al. Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The pipeline of our proposed Multi-task Sparse Screening (MSS) algorithm.
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Fig. 2. 
The scatter plots of whole dataset on 24-month.
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Table 1

Statistics of studied subjects.

Group Baseline 6-month 12-month 24-month

AD 199 165 144 109

MCI 407 359 338 254

CU 230 213 201 178

Total 836 737 683 541
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