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Abstract

Kidney function evaluation using dynamic contrast-enhanced MRI (DCE-MRI) images could help 

in diagnosis and treatment of kidney diseases of children. Automatic segmentation of renal 

parenchyma is an important step in this process. In this paper, we propose a time and memory 

efficient fully automated segmentation method which achieves high segmentation accuracy with 

running time in the order of seconds in both normal kidneys and kidneys with hydronephrosis. The 

proposed method is based on a cascaded application of two 3D convolutional neural networks that 

employs spatial and temporal information at the same time in order to learn the tasks of 

localization and segmentation of kidneys, respectively. Segmentation performance is evaluated on 

both normal and abnormal kidneys with varying levels of hydronephrosis. We achieved a mean 

dice coefficient of 91.4 and 83.6 for normal and abnormal kidneys of pediatric patients, 

respectively.
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1. INTRODUCTION

Hydronephrosis refers to the fluid-filled enlargement of the kidney as a result of obstruction 

in its output of urine. It is found in 2-7% of all maternal ultrasound scans and 10% of these 

children may have a significant urological problem. Delayed intervention in infants with 

severe hydronephrosis may lead to permanent loss of kidney function with the potential for 

lifelong complications associated with chronic renal insufficiencies. MRI can provide 

clinically important markers of kidney function such as glomerular filtration rate (GFR) 

without exposing patient to ionizing radiation. Dynamic contrast-enhanced (DCE) MRI 

signal can be analyzed using pharmacokinetic (PK) models, and MR based GFR can be 

computed for determining whether a patient with persistent hydronephrosis will be referred 

for surgery or will receive conservative treatment. The PK models use time intensity curves 

of the kidney parenchyma region to calculate both a single kidney GFR and a GFR map. 

Accurate segmentation of kidney parenchyma is an important step to compute a robust and 

reliable GFR measure. Manual segmentation can take several hours. An accurate and robust 

technique for automated segmentation of kidney parenchyma (i.e. cortex and medulla) will 
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reduce the burden on radiologist and accelerate the translation of MR based GFR technique 

into clinical practice.

DCE-MR image series include 3D volumetric images acquired at different time points after 

contrast injection. The time intensity curves for different organs have different shapes. This 

temporal information can be used to discriminate kidney parenchyma from the other 

abdominal organs in the segmentation process. Several automated segmentation techniques 

have been proposed for renal segmentation using this temporal information [1] and [2], 

however, for patients with diseased kidneys, these methods often fail. A software with user 

interface (CHOP-fMRU) is available for semi-automated segmentation and functional 

analysis of DCE-MR images [3], however, it requires several manual inputs from the user, 

such as drawing several initial boundary curves around the regions of interest. Recent studies 

has attempted to combine spatial and temporal information using a series of heuristic steps 

[4] ,[5], some of which might fail in patients with pathological kidney and these approaches 

have relatively longer running times. Unlike previous segmentation techniques, deep 

learning algorithms process new test data very fast with running times on the order of 

seconds. Another drawback of the previous methods is the usage of hand crafted features 

and thresholds which fail to perform well for patients with abnormal kidneys with enlarged 

pelvis and thinned parenchyma regions. In contrast, our proposed network learns a 

hierarchical representation of spatial and temporal features during the training process, 

which results in improved performance in both normal and abnormal kidneys.

In this work, we propose a fully automated segmentation framework based on U-Net [6] 

architecture which was initially developed for 2D microscopy image segmentation. U-Net 

has the ability to capture local and global information for the image segmentation task and is 

able to generalize well from a small set of training samples. Variations of this network have 

also shown successful results for volumetric medical image segmentation [7],[8],[9]. We 

propose a 3D segmentation algorithm based on the 3D version of this architecture for 

automatic renal parenchyma segmentation in DCE-MR images. We will incorporate 

temporal features as the channel information for each voxel. However, applying the 3D U-

Net for renal segmentation task has multiple challenges. First, each subject has a very large 

sized 4D data along with a large sized network parameter file, all of which can not be fitted 

into limited GPU memory and will therefore result in slow training process. Moreover, the 

resulting segmentation usually needs a refining step such as dense conditional random fields 

[10],[9], using auto-context [11] or similar methods for reducing false positives which makes 

the algorithm more time inefficient. Thus, we propose to divide our problem into two sub-

problems that can be solved more efficiently in terms of time and memory when separated 

out: First, we apply a modified 3D U-Net on low resolution and augmented data for 

localizing the right and left kidneys; and second, we will apply U-Net on each extracted 

kidney region from the previous step for segmentation. Each of these sub-problems can be 

solved more quickly and need less memory compared to the naive approach. Our total test 

time is < 5 seconds for each new patient.
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2. DATASET

We use DCE-MR images of a total of 30 pediatric patients acquired at 3T for six minutes 

after injection of Gadavist using radial stack-of-stars 3D FLASH sequence (TR/TE/FA 

3.56/1.39ms/12, 32 coronal slices, voxel size 1.25 × 1.25 × 3mm). 18 of these cases were 

retrospectively collected from hospital database from patients with hydronephrosis who 

received MRI as part of their clinical protocol within the last 2 years. 12 of these patients 

were recruited under a protocol approved by the Institutional Review Board for subjects who 

receive contrast-enhanced MRI as part of their clinical protocol to undergo additional 

research imaging with DCE-MRI within the same imaging session. We optimized 

acquisition protocol to achieve a mean temporal resolution of 3.3 sec for the arterial phase (2 

minutes) and 13 sec for the remaining phases (4 minutes). 4D dynamic image series were 

reconstructed offline from raw data using a compressed sensing algorithm to improve 

temporal resolution and image quality, effectively reducing the streaking artifacts [12]. The 

age range of our pediatric patient group was between 2 months to 17 years. The field of view 

varied in patients with hydronephrosis according to the clinical protocol.

3. METHODS

In this section, we describe a memory efficient renal segmentation framework which 

automatically segments kidneys given a 4D DCE-MRI as input. As described in Section 2, 

having a time dimension for each voxel creates a very large data tensor for each subject. On 

the other hand, U-Net architecture have shown to be successful in many MRI segmentation 

applications. However, the 3D version of this architecture is not memory efficient and 

requires many parameters to learn. Considering the nature of our 4D data, we need to reduce 

the data and network size in the context of fully convolutional network for the purpose of 

GPU processing. Our proposed algorithm divides the problem into two sub-problems of 

localization and segmentation which can be solved more efficiently in terms of time and 

memory when separated out. Figure 1 summarizes the steps and the input data size of each 

step. We have used the fact that localization doesn’t need high resolution image in space 

dimension and have used downsampled version of the image for localization. High 

resolution image inside the bounding box will be segmented in the second step. The 

preprocessing and the details of the networks used at each step are described in Section 3.1 

and 3.2.

3.1. Localization

The 3D CNN network used for localization task is based on the 3D U-Net. Temporal 

features are mapped to the channel information dimension of the network. U-net architecture 

learns the model with good generalization performance using a small number of training 

samples. However, considering our data variability described in Section 2, data 

augmentation is necessary for the network to learn and generalize from a small number of 

training samples. Given the large memory needed to load the training data and network 

parameters, augmentation choice is very limited. The approach we used here was to reduce 

the data size in all dimensions where redundant information is present so that the memory 

size will be reduced. This enabled us to use data augmentation in order to achieve an 
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improved model fitting. To this end, we resampled the data from 224 × 224 × 32 to 64 × 64 

× 64 to have sufficient resolution required for localization. We also reduced the time 

dimension using principle component analysis (PCA) and kept the first 5 dimensions with 

the highest variance (i.e. explaining 98% of variance in the data). The 4D data of each 

subject was then augmented for various scales and fed into the localization network. 

Augmentation details are given in Section 4. The localization network, based on the U-net 

architecture, consists of a contracting and an expansive path. Each layer in contracting path 

contains two 3×3×3 convolution filters followed by a rectified linear unit (ReLu) and 2 × 2 × 

2 max pooling with strides of two for down-sampling. In the expansive path, each layer 

consists of a convolutional transpose of 2 × 2 × 2 by strides of two in each dimension, 

followed by two 3 × 3 × 3 convolutions each followed by a ReLu. Layers with equal 

resolution from contracting path are concatenated to their corresponding layers in the 

expansive path to add high-resolution features to the expansive path. Finally, a 1 × 1 × 1 

convolution reduces the number of output channels to the number of classes in the last layer. 

The input data to this network is a 64 × 64 × 64 image with 5 channels. We used dropout 

layers after each maxpooling layer in the contracting path to reduce the chance of overfitting 

based on high resolution features in the first layers. Batch normalization was also used 

before the final 1 × 1 × 1 convolution layer for having faster convergence and less 

overfitting. Input labels are forming three channels of foreground/background labels 

corresponding to each class.

The network discriminates between three classes, namely right kidney, left kidney and 

background. However, there is an imbalanced distribution of samples in the kidney classes 

compared to the background class. We used a weighted cross entropy loss [10] in order to 

compensate for this imbalance and achieve more accurate learning when training the 

network. Weighted cross entropy loss is given by

Lcross − entropy = − 1
N ∑

i = 1

N
wi

c pi log pi + (1 − pi) log(1 − pi) (1)

where pi is the probability of voxel i belonging to the foreground in each output channel and 

pi represents the true label in the corresponding input channel. We fix wi
c to be inversely 

proportional to the probability of voxel i belonging to the foreground class. We used softmax 

with weighted cross-entropy loss for network output and true labels comparison. Cost 

minimization on 1000 epochs was performed using ADAM optimizer with learning rate of 

0.0001. The training time for this network was approximately one hour on a workstation 

with an NVIDIA Quadro 5000 GPU.

3.2. Segmentation

We trained the second network, which performs the segmentation task, using the bounding 

boxes of the manually labeled kidneys in the training set. The kidneys were cropped and 

then fed into the second network for training. We resampled all cropped kidneys to a 

common spatial dimension of 64 × 64 × 64. We also interpolated and resampled the time 

intensity curves of each subject to a common temporal resolution and a common maximum 
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acquisition time of 5 minutes. Fifty samples from 5 minutes acquisition were interpolated to 

ensure keeping the maximum variance of time intensity curves for different classes using 

minimum number of samples. The segmentation network used in this framework is the same 

as the localization network with the exception that the drop out layers were removed. The 

input data to this network is a 64 × 64 × 64 image with 50 channels and input labels are two 

channels of foreground/background labels corresponding to each kidney/non-kidney class. 

We again used softmax along with weighted cross entropy loss to compare network output 

and true segmentation labels. Cost minimization on 500 epochs was performed using 

ADAM optimizer with learning rate of 0.0001. The training time for this network was 

approximately one hour on a workstation with an NVIDIA Quadro 5000 GPU.

4. EXPERIMENTAL RESULTS

We trained the networks in the proposed framework for automated segmentation of normal 

and abnormal kidneys, using the data of 24 subjects (9 with normal and 15 with abnormal 

kidneys). We used precision, recall, dice coefficient (DSC) or F1-score and volumetric 

estimation error (VEE) for evaluating the algorithm segmentation performance. F1-score, 

which is the harmonic average of precision and recall, reports the accuracy of the overlap 

between the predicted and true manual segmentation. We also report the performance of the 

model, trained using 24 subjects, and tested on 6 previously unseen subjects (3 patients with 

normal and 3 patients with pathological kidneys) that were not included in the training 

process. As explained in section 3, we train each of the localization and the segmentation 

networks independently using the training data and the manual segmentation masks. 

Segmentation results are shown in Figure 2 for one normal and one abnormal kidney 

example from the test set. Middle figure in each row is showing the result of bounding box 

detection. Predicted output consisted of three classes; right kidney, left kidney and 

background. After extracting three classes from initial segmentation masks and forming the 

bounding boxes, each class was scaled to 64 × 64 × 64 volumes and the original time 

dimension was resampled, interpolated and added to the data as the channel information. 

Finally, the segmentation classifies each voxel in the high resolution image into kidney or 

non-kidney class. Third figure in each row is showing the result of segmentation and re-

positioning each kidney back into the detected bounding box. The resulted average 

performance measures for final unseen test cases are reported in Table. 1. Mean F1-scores 

for three patients with normal and three with abnormal kidneys were 91.4 and 83.6 

respectively.

5. CONCLUSION

In this work we proposed a time and memory efficient fully-automated framework for 

segmentation of renal parenchyma using DCE-MRI data. The proposed learning based 

framework consists of two cascaded CNNs for localization and segmentation of kidneys. 

The proposed fully automated algorithm performed well in both normal and abnormal 

kidneys.
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Fig. 1. 
Automated segmentation steps: Original image segmentation problem is divided to: 1) 

localization based on low resolution data. 2) segmentation of each localized kidney.
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Fig. 2. 
Kidney segmentation results:1) Localization using simplified 3D U-Net, 2) Segmentation of 

the cropped area using 3D U-Net
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Table 1.

Renal segmentation performance.

Session Test (mean ± sd)

Kidney Normal Abnormal

Precision 94.8±0.05 90.6±0.03

F1-score 91.4±0.03 83.7±0.03

VEE 12.9±2.4 mL 19.5±3.2mL

Time ~3s
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