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Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, and behavioral 

treatment interventions have shown promise for young children with ASD. However, there is 

limited progress in understanding the effect of each type of treatment. In this project, we aim to 

detect structural changes in the brain after treatment and select structural features associated with 

treatment outcomes. The difficulty in building large databases of patients who have received 

specific treatments and the high dimensionality of medical image analysis problems are the 

challenges in this work. To select predictive features and build accurate models, we use the sure 

independence screening (SIS) method. SIS is a theoretically and empirically validated method for 

ultra-high dimensional general linear models, and it achieves both predictive accuracy and correct 

feature selection by iterative feature selection. Compared with step-wise feature selection methods, 

SIS removes multiple features in each iteration and is computationally efficient. Compared with 

other linear models such as elastic-net regression, support vector regression (SVR) and partial 

least squares regression (PSLR), SIS achieves higher accuracy. We validated the superior 

performance of SIS in various experiments: First, we extract brain structural features from 

FreeSurfer, including cortical thickness, surface area, mean curvature and cortical volume. Next, 

we predict different measures of treatment outcomes based on structural features. We show that 

SIS achieves the highest correlation between prediction and measurements in all tasks. 

Furthermore, we report regions selected by SIS as biomarkers for ASD.
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1. INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits 

in social communications and repetitive behaviors [1]. Structural changes of the brain have 

been identified in patients with ASD in the literature: Sparks et al. found children with ASD 
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have significantly increased cerebral volumes compared with typically developing (TD) and 

delayed developing (DD) children [2]. Pereira et al. found changes in cingulate gyrus, 

paracentral lobule and superior frontal gyrus on subjects with ASD [3].

Behavioral-based treatments are widely used for ASD, and Pivotal Response Treatment 

(PRT) is an empirically supported therapy [4] which addresses core deficits in social 

communication skills. Although structural changes in the brain have been studied for ASD, 

there has been limited progress in identifying the effect of PRT on brain structure. Therefore, 

predictive models for treatment outcomes based on brain structural changes is essential for 

understanding the mechanism of ASD. Furthermore, accurate predictive models are more 

robust than analytical models which tend to overfit to small datasets.

The difficulty in building large databases and the high dimensionality of medical images are 

the main challenges. We introduce sure independence screening (SIS) [5], a feature selection 

method for ultra-high dimensional general linear models. Although the screening method is 

widely used in genetics research, the neuroscience community tends to use simpler linear 

models such as elastic-net [6]. However, these simple models cannot deal with ultra-high 

dimensional problems, yet more straightforward step-wise feature selection methods are 

computationally expensive. In this paper, we demonstrate the superior performance of SIS 

over other models in the prediction of changes in severity score based on structural features 

of the brain. Furthermore, we analyze selected features as biomarkers for ASD.

2. METHODS

2.1. Difficulties for high-dimensional problems

The high dimensional problem refers to problems where the dimension p is larger than the 

sample size n. The high dimensionality causes the following problems: (a) Design matrix X 
has more columns than rows, which causes matrix XTX to be singular and large. Linear 

regression with no constraint will generate an infinite number of solutions to training data, 

and it’s hard to determine which is the correct model and generalizes to test data. (b) In a 

high dimensional case, an unimportant variable can have a high correlation with the 

response variable or predictive variables, and this adds to the difficulty of variable selection. 

(c) The high dimension p makes step-wise feature selection methods computationally 

infeasible.

There are mainly three types of feature selection methods: wrapper methods, embedded 

methods, and filter methods. Wrapper methods such as forward selection, backward 

elimination, and recursive feature elimination have a huge computational burden because 

each subset of features has to be tested. Embedded methods with built-in feature selection, 

such as LASSO and elastic-net regression [6], usually cannot deal with ultra-high 

dimensional problems. Filter methods usually pre-select variables based on some importance 

measures before learning; however, this pre-processing step usually cannot accurately select 

predictive features. Zhuang et al. proposed a two-level feature selection approach specially 

for brain image analysis [7]; however, the region-level feature selection in their method 

depends on the assumption of local smoothness of the input image, therefore is suited for 

voxel-wise features but not ROI-wise features. Zhuang et al. proposed a non-linear feature 
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selection method based on random forest [8]; however, their method is well suited for non-

linear models but not linear models. Therefore, we introduce SIS [5], a fast and accurate 

feature selection model for ultra-high dimensional general linear models.

2.2. Sure independence screening

Sure screening means a property that all the important variables survive after applying a 

variable screening procedure with probability tending to 1 (Theorem 3 in [5]) as sample size 

n increases. This asymptotic property gives a theoretical guarantee on the performance of 

SIS.

Suppose the design matrix X is centered and normalized to unit variance for each column, 

and the dimension of X is n × p, where n is the number of observations, and p is the number 

of variables. Denote response variable as y, and y is a vector of length n. Denote the true 

predictive variables as M∗ = {1 ≤ i ≤ p : βi ≠ 0}where the true model is Y = Xβ. Denote the 

non-sparsity rate as s = |M*|. A component-wise regression is defined as:

w = XTy (1)

Note that each column of X is already normalized. The ith component of w, denoted as wi, is 

proportional to the linear correlation between Xi and y. For a given parameter γ ∈ (0,1), the 

[γn]largest components in w are selected. The subset of preserved features are defined as:

Mγ = 1 ≤ i ≤ q: wi is among the largest γn (2)

The full algorithm is summarized in algorithm 1 and Fig. 1. The iterative SIS algorithm 

performs feature selection recursively, until some criterion is satisfied. Within each iteration, 

for a given penalty (e.g. l1 penalty for LASSO, or Minimax Concave Penalty (MCP) ), by 

varying the regularization strength, there’s a set of corresponding solutions summarized as 

“regularization path”. For each point along the path, the goodness of fitting can be measured 

by some criterion (e.g. Akaike information criterion) as shown in the thick blue curve in Fig. 

1. The selected model is represented by the dot in Fig. 1, and the corresponding features are 

selected for the next iteration.
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2.3. Sparsity penalties for general linear models

Within each iteration in Algorithm 1, the algorithm fits a generalized linear model. Different 

sparsity penalties can be applied considering the computation capability, and this problem 

can be efficiently solved with standard algorithms such as coordinate descent.

We briefly introduce two types of sparsity penalty in this paragraph. l1 penalty is widely 

used for feature selection and reduces the problem to LASSO, and its variant adaptive 

LASSO [9] introduces the sparsity penalty term as

λ ∑
j = 1

d
aj βj (3)

where aj is the weight for the jth component, and λ is a pre-defined penalty hyper-parameter.

Another commonly used penalty is Minimax concave penalty (MCP) [10], where the 

problem is defined as:

β = argminθ{ 1
2n ∑

i = 1

n
Y i − xiTθ 2 + ∑

j = 1

d
pλj θj } (4)

where pλ(|θ|) is defined as:

pλ( θ ) = (aλ − θ )+/a, for some a > 2 (5)
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For any penalties, the regularization path can be calculated, which is then used to select the 

optimal regularization strength.

2.4. Model selection criterion

After calculating the regularization path, the optimal regularization strength can be selected 

by some model selection criterion. The loss for model selection is shown in thick blue curve 

in Fig. 1, and the optimal point is marked with a dot. The model selection criterion typically 

balances goodness of fitting training data and complexity of the model. We introduce three 

types of criterion here.

(a) Akaike information criterion (AIC) [11], where the parameters are chosen as

β = argminθ −logP(y X, θ) + 2df (6)

where df is the degree of freedom of the fitted model, and θ is the parameter to be estimated.

(b) Bayesian information criterion (BIC) [12], where theparameters are chosen as

β = argminθ −logP(y X, θ) + log(n)df (7)

(c) Extended bayesian information criterion (EBIC) [13],where the model is determined as

β = argminθ{−logP(y |X, θ) + log(n)df + 2ηlog(Cp
df)} (8)

where η is a pre-defined parameter, and Cp
df represents number of choices to choose df 

variables from a total of p variables.

3. EXPERIMENTS

3.1. Participants and measures

Nineteen children (13 males, 6 females, mean age = 5.87 years, s.d. = 1.09 years) with ASD 

participated in 16 weeks of PRT treatment. IQ was measured using the Wechsler 

Abbreviated Scale of Intelligence (WASI). All participants were highly functioning (IQ ≥ 

70, Mean IQ = 104.5, SD = 16.7) regarding full-scale IQ. All participants met the diagnostic 

criteria for ASD determined by the results of the Autism Diagnostic Observation Schedule 

(ADOS) [14]. The regression targets(y) are the differences between pre and post-treatment 

scores, including ADOS calibrated severity score, ADOS social affect total score, ADOS 

restricted and repetitive behavior total score and social responsiveness scale (SRS) total 

score [15].

3.2. Imaging acquisition and processing

Each child underwent pre-treatment and post-treatment scans on a Siemens MAGNETOM 

3T Tim Trio scanner. A structural MRI image series was acquired with a 12-channel head 

coil and a high-resolution T1-weighted MPRAGE sequence with the following imaging 
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parameters: 176 slices, TR = 2530 ms, TE = 3.31ms, flip angle = 7°, slice thickness = 1.0 

mm, voxel size = 1 × 1 × 1mm3, matrix = 256 × 256.

The structural MRI was processed with FreeSurfer [16] using the ”recon-all” command with 

31 stages of processing, and the key steps include: (a) motion correction and conform, (b) 

non-uniform intensity normalization, (c) skull strip and removal of neck, (d) registration, (e) 

white matter segmentation, (f) cortical parcellation, (g) cortical parcellation statistics. We 

used freesurfer_stats2table_bash commands from FreeSurfer official website to extract 

structural statistics. Four features of each region of interest (ROI) in the Destrieux atlas [17] 

were extracted, including volume, cortical thickness, surface area and mean curvature, 

resulting in a total number of 592 features (4 features × 148 cortical ROIs).

3.3. Predictive modeling and method comparison

We predicted treatment outcomes (changes in ASD severity scores) from changes of 

structural information (posttreatment structural features minus pre-treatment features) 

extracted from FreeSurfer, and we included phenotype information such as age, gender and 

pre-treatment IQ in our model as confounding factors. We performed leave-one-out cross-

validation (LOOCV) and measured cross-correlation and root mean squared error (RMSE) 

between prediction and ground-truth outcomes. We chose LOOCV instead of correlation 

analysis to validate the predictability of selected features and reduce the false discovery rate.

The analysis was conducted in R with default parameters unless stated. We used “gaussian” 

family in package “SIS”, and set “penalty” as “MCP” and set “tune” as “bic”. Besides SIS, 

we applied other linear regression models as comparison, including: (a) elastic-net 

regression with nested LOOCV to select parameter λ (100 default values) and α (ranging 

from 0 to 1 with a step size of 0.1) with package “glmnet”, (b) support vector regression 

(SVR)[18] with package “e1701”, and (c) partial least squares regression (PLSR) [19] with 

nested LOOCV to select the number of components (ranging from 1 to maximum number of 

components) with package “pls”.

4. RESULTS

Results of different methods on predicting changes of SRS scores are shown in Fig.2. 

Compared to other methods, results from SIS method lie nearest to the ideal line prediction 
= measurement. In the high-dimensional case, it’s easy to select features that have a high 

correlation with responses of training data but lack predictive ability on test data. Sometimes 

the model even produces a negative correlation as shown in Fig. 2 with PLSR and SVR, 

because the maximum spurious correlation grows with dimensionality, while SIS produces 

predictive results in the cross-validation.

Performance of different methods on various tasks are summarized in Fig.3 and the upper 

part of table 1. RMSE and correlation between prediction and ground-truth outcomes are 

reported. Corrleation is multiplied by 10 for display purpose. Compared with other methods, 

SIS produces the highest correlation in all tasks, and it produces a correlation of above 0.4 in 

ADOS calibrated severity task, while all other methods generate negative correlations 

because the wrong features are selected. SIS generates the lowest RMSE in the prediction of 
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changes in SRS, ADOS calibrated severity and ADOS social affect score. For results on 

ADOS restricted and repetitive behavior, four methods produce very similar RMSE, while 

SIS generates the highest correlation.

Features selected by SIS on the SRS task are reported in the lower part of table 1. Our 

findings match previous literature: group differences between ASD and control have been 

found in anterior subcallosal gyrus [20], precuneus [21], cingulate gyrus, paracentral lobule, 

superior frontal gyrus and paracentral gyrus[3]. The selected features are not only correlated 

with treatment outcomes, but also are predictive for treatment outcomes.

5. DISCUSSION AND CONCLUSION

The high dimensionality is a huge difficulty in many medical image analysis problems. We 

introduce SIS for general linear models in the ultra-high dimensional case, and validate its 

superior performance over traditional methods on different tasks. SIS selects structural 

changes in the brain that are predictive for treatment outcomes, which is useful for 

understanding the effect of behavioral treatments.
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Fig. 1: 
X axis shows different values of regularization strength λ. Colored lines show the 

regularization path, and the thick blue line demonstrates the loss for some model selection 

criterion (e.g. AIC). The blue dot represents the λ with the lowest loss.
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Fig. 2: 
Prediction of change of SRS score from different methods
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Fig. 3: 
Performance of different methods on different tasks. RMSE and Correlation are reported. 

Correlations are multiplied by 10 for display purpose.
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