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ABSTRACT

Chest X-rays are the most common diagnostic exams in emer-
gency rooms and hospitals. There has been a surge of work on
automatic interpretation of chest X-rays using deep learning
approaches after the availability of large open source chest X-
ray dataset from NIH. However, the labels are not sufficiently
rich and descriptive for training classification tools. Further,
it does not adequately address the findings seen in Chest X-
rays taken in anterior-posterior (AP) view which also depict
the placement of devices such as central vascular lines and
tubes. In this paper, we present a new chest X-ray benchmark
database of 73 rich sentence-level descriptors of findings seen
in AP chest X-rays. We describe our method of obtaining
these findings through a semi-automated ground truth gen-
eration process from crowdsourcing of clinician annotations.
We also present results of building classifiers for these find-
ings that show that such higher granularity labels can also be
learned through the framework of deep learning classifiers.

Index Terms— chest X-rays, AP view, datasets, deep
learning networks, ensemble networks

1. INTRODUCTION

Chest X-rays are the most common imaging exams being
conducted in emergency rooms. Recently, a number of
researchers have begun automated interpretation of chest
X-rays, focusing on posterior-anterior (PA) views and lim-
ited number of labels of high granularity such as opacity or
consolidation.[1, 2, 3]. If machines are to assist radiologists
through automated interpretation, it is important to expand
the number of findings as well as refine them to incorpo-
rate location, laterality, character and other information so
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Fig. 1. Illustration of spatial overlap between labels relating
to lines and tubes and anatomical findings.

that automated report generation may one day become pos-
sible. Further, the viewpoints should be expanded to cover
anterior-posterior (AP) views as well which are generally
taken to aid in the diagnosis of acute and chronic conditions
in intensive care units in hospitals. Although the AP view
is lower in quality to PA view, this is often the only mode
in which sick patients can be imaged for problems in lungs,
bony thoracic cavity, mediastinum, and great vessels. The
resulting images often depict multiple types of findings such
as anatomical findings, technical assessment problems, and
tubes/lines placement issues as shown in Figure 1.

Currently no labeled datasets that cover the list of possi-
ble findings seen in AP chest X-rays. The large open source
chest X-ray dataset provided from NIH[2] covers only dis-
crete anatomical findings. Hence existing approaches have
either ignored the viewpoint during training [1, 2] or focused
on PA views only[3].

Chest X-rays also depict spatially and semantically over-
lapping findings for which simple labels describing only the
core finding are not sufficient to build robust classifiers. Fig-
ure 1 illustrates the difficulty of detecting spatially overlap-
ping findings in AP chest X-rays. Here, the findings of ”infil-
tration”, ”alveolar opacity”, and positioning of ”right internal
jugular line at the cavoatrial junction” are all within the same
spatial vicinity. When feature regions of two different class
labels spatially overlap, the classifiers often select weights
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Fig. 2. Illustration of semantic overlap in labels both referring
to different positioning of left picc lines.

Fig. 3. Illustration of structured template used to collect radi-
ology report to derive the labels.

that bias towards the label with larger training data. Figure 2
shows the specificity of labels problem with AP chest X-rays
where semantic overlap between findings need to be carefully
distinguished by describing not only the core findings but also
the placement. Here the classification method needs to be fine
grained to recognize the difference in the similarity of the la-
bels referring to the same device but placed at different loca-
tions in the body. This requires higher precision in deriving
the labels themselves.

In the work on chest X-rays so far, not enough attention
has been paid to the choice of labels for the classifiers. Al-
though about half of the NIH dataset consists of AP chest X-
rays (44,812 images), the labels currently provided only cover
anatomical findings without elaborating on modifiers such as
laterality, location or severity which affect visual appearance
and hence the classification accuracies. Fresh annotation ef-
forts have also begun but focused on a single finding such
as the pneumonia dataset recently provided by RSNA-Kaggle
challenge[4]. Since all AP chest X-ray findings are also doc-
umented in radiology reports, automatic interpretation algo-
rithm must support AP chest X-ray imaging. Hence there is
a need to derive higher granularity labels for AP Chest X-ray
imaging.

In this paper we present a benchmark dataset of AP chest
X-rays originally derived from NIH dataset but relabeled for

Fig. 4. Illustration of results of semantic clustering of report
sentences.

Fig. 5. Illustration of label data reduction through successive
processing.

higher granularity findings in AP chest X-rays. The labels
are derived from a semi-automatic curation process that in-
volves crowd-sourcing of clinician read reports through ease-
of-use user interfaces followed by automated text clustering
and semantic grouping, and final clinician verification. To
obtain sufficient granularity of description, sentence level la-
bels are retained. Such labels also facilitate the production of
automated reports as they can be directly used to form the re-
port. We also address the problem of building classifiers for
such higher granularity findings by exploring two architec-
tures, one based on conventional deep learning and another
hybrid deep learning formulation to exploit the greater fea-
ture selection and explain capability of ensemble classifiers.
These results show that such higher granularity findings in AP
chest X-rays can also be learned by the state-of-the-art classi-
fiers.

2. LABEL GENERATION FOR AP CHEST X-RAYS

The NIH dataset consists of 112,121, images with 44,812 im-
ages in AP view from 9061 patients. To generate the labeled
dataset for AP chest X-rays, we sampled the dataset so that at
least one AP chest X-ray image was selected from all patients
to obtain a total of 16910 unique images for re-annotation.
To rapidly annotate the large dataset and list of possible find-
ings in AP chest X-rays, we developed a web-based crowd-
sourcing annotation system and recruited over 42 radiologists
around the country to perform the annotation. In collecting
the annotation, we simulated a radiology read setup in a hos-
pital by providing a templated report form to the radiologists
shown in Figure 3. As can be seen by the template, it allows
radiologists to describe all major structures seen in chest X-



rays as well as any device artifacts including lines and tubes.
Further, technical assessment was also captured in addition to
structured labeling of viewpoints. The free text form within
these templated sections allowed radiologists freedom to de-
scribe or dictate the findings relatively freely to rapidly com-
plete a report (20 images/per hour was the observed speed)
without requiring the selection of discrete labels.

2.1. Sentence clustering for label generation

The resulting reports generated nearly 45000 sentences of
which 17000 unique sentences were discovered after normal-
ization by removing the stop words, small typos, case dif-
ferences, etc. while still maintaining the order of the words.
Clustering was then attempted within sentences coming from
the same report template section. The distance metric cho-
sen for clustering measured the extent of overlap of words
between two sentences with and without keeping the order
of the words. The pairwise similarity between two sentences
S =< s1s2...sK > of K words, and T =< t1t2...tN > of N
words was defined as:

d(S, T ) = max{dunordered(S, T ), dordered(S, T )} (1)

where dunordered(S, T ) is given by

dunordered(S, T ) =
2 ∗ |S ∩ T |
|S ∪ T |

(2)

where |S∩T | is the number of words common between S and
T and |S ∪ T | is the total length of the two strings in words.
The ordered score dordered(S, T ) is the ordered similarity
computed by a string matching algorithm called the longest
common subfix (LCF) algorithm [5] given by dordered(S, T ) =<
p1p2...pL > , where L is the largest subset of words from S
that found a partial match in T and pi is a partial match of a
word si ∈ S to a word in T. A word si in S is said to partially
match a word tj in T if it shares a maximum length common
prefix pi such that |pi|

max{|si|,|tj |} > τ . If we make the thresh-
old τ = 1.0 , this reduces to the case of finding exact matches
to words of S. Note that this formulation is different from
the conventional longest common subsequence (LCS) string
matching as there is an emphasis on character grouping into
words and the use of word prefixes to relate words in the En-
glish language. This algorithm uses dynamic programming
alignment at the words level using word prefixes and allows
for gaps and insertions while preserving the word order. The
algorithm also uses other enhancements for negation pattern
finding, and abbreviation expansions as described in [5].

The ordered score dordered can be computed using dy-
namic programming alignment algorithm by keeping an array
C[i, j] to calculate the score of matching a fragment of S up
to the ith word and fragment of T up to the jth word. We then
update the dynamic programming matrix according to the al-
gorithm shown in Algorithm 1. Here pmax(i, j) is the longest
prefix of the strings (si, tj) and δ is a mismatch penalty, which

controls the separation between matched words and prevents
words that are too far apart in a sentence from being associ-
ated with the target sentence. Using this algorithm, S is said
to match sentence T if |LCF (S,T )|

|S| ≥ Γ for some threshold Γ.
The choice of δ and Γ affect the closeness of the match and
were chosen to meet specified criteria for precision and recall
based on an ROC curve analysis on labeled collection.

Figure 4 shows the results of applying the similarity score
d(S, T ) on a variety of sentences found in the generated re-
ports. It can be seen that the algorithm spots sentences with
similar meanings without a deep understanding of their lin-
guistic origins. The algorithm uses other enhancements for
handling negations and abbreviation expansions which are
skipped here for brevity.

Algorithm 1 Longest Common Subfix Algorithm
LCF(S,T):

1: Input/Output Input: two strings (S,T). Output: an alignment
score.

2: Initialize c[i, 0] = 0, c[0, j] = 0, 0 ≤ i ≤ K, 0 ≤ j ≤ N .
3: Iterate for (1 ≤ i ≤ K)

for (1 ≤ j ≤ N)

ρij = |pmax(i,j)|
max{|si|,|tj |}

If C[i− 1, j − 1] + ρij > C[i− 1, j] and
C[i− 1, j − 1] + ρij > C[i, j − 1]

C[i, j] = C[i− 1, j − 1] + ρij
else

if (C[i− 1, j] + ρij > C[i, j − 1]
C[i, j] = C[i− 1, j]− δ

else
C[i, j] = C[i, j − 1]− δ

To perform clustering, all unique sentences belonging to a
section heading across reports are collected and lexicographi-
cally ordered. Starting from the first sentence, each succes-
sive sentence is added to the cluster if its LCF distance is
within a threshold with respect to all previous members. The
first sentence that violates this constraint becomes the start of
a new cluster. This method of grouping brings out the lex-
ical similarity in the sentences as shown in Figure 4. Here
a representative sentence from that group is used to denote
the cluster. Using this process, the total sentences to exam-
ine reduced from 40,000 to about 458 cluster representatives
as shown in Figure 5 based on the number of clusters pro-
duced (also 458). The semantic merging of these labels is
then done manually by radiologists on this reduced dataset to
further group the labels into 113 semantic groups. In doing
the grouping, the radiologists kept the distinction of location,
laterality and severity as those cause changes in visual ap-
pearance. By retaining all those clusters with more than 50
images per cluster, we retain 73 labels as important labels for
AP chest X-rays. Looking at the distribution of labels in Fig-
ure 5 and Table 1, we can see that there are labels related to
tubes and lines, not previously known to researchers working
with the NIH dataset.



Label Samples DFRF DenseNet
Averarge ROC 0.7 0.69
Bibasal patchy opacities. 223 0.68 0.58
Bibasilar atelectasis, infection or aspiration. 60 0.71 0.62
Bibasilar atelectasis. 80 0.63 0.69
Bilateral pleural effusion. 106 0.78 0.7
Blunting of bilateral costophrenic angles. 118 0.62 0.7
Blunting of the left costophrenic angle. 195 0.64 0.76
Blunting of the right costophrenic angle. 108 0.67 0.7
Cardiac silhouette is enlarged. 1271 0.74 0.8
Cardiac silhouette is mildly enlarged. 246 0.59 0.58
Cephalization of the pulmonary vasculature. 109 0.71 0.79
Diffuse bilateral opacities. 264 0.89 0.9
Elevated left hemidiapragm. 113 0.53 0.58
Elevated right hemidiaphram. 163 0.56 0.75
Endotracheal tube present. 130 0.77 0.76
Enlarged cardiac silhouette and diffuse parenchymal opacities
which may represent volume overload/pulmonary edema. 141 0.67 0.67
Enteric tube present. 176 0.79 0.77
Enteric tube tip below the diaphragm. 185 0.78 0.77
Enteric tube with tip termination beyond the margin of the radiograph. 103 0.83 0.72
ET tube in proper position. 329 0.84 0.86
ET tube in trachea. 186 0.86 0.81
Interstitial opacities bilaterally. 93 0.58 0.75
Large body habitus. 159 0.87 0.88
Left basal opacity. 156 0.66 0.77
Left internal jugular line present. 61 0.61 0.59
Left internal jugular line with tip at the cavoatrial junction. 67 0.8 0.68
Left internal jugular line with tip overlying the superior vena cava. 73 0.56 0.56
Left picc line present. 247 0.75 0.8
Left picc line with tip overlying the superior vena cava. 374 0.62 0.62
Left picc with tip at the cavoatrial junction. 424 0.71 0.71
Left pleural effusion. 77 0.67 0.66

Table 1. Illustration of the label classes derived from the
labeling process and the performance of DenseNet in AUC
measure for the respective classes. Only 32 of the 73 derived
labels are shown for brevity.

3. CLASSIFICATION OF CHEST X-RAY FINDINGS

From the names of the labels available from AP Chest X-
ray reports, we can observe that the labels such as ”left picc
line with tip at the superior vena cava” and ”left picc with
tip at the cavoatrial junction,” depict very similar appearance
of these lines as shown in Figure 2 with the main difference
being the position of the picc line (peripherally inserted cen-
tral catheter) endpoint. In addition, tubes and lines have a
small footprint in the overall image due to their thin tubu-
lar structures. To ensure we are able to adequately distinguish
between these finer granularity labels, we explored two differ-
ent architectures for building the classifiers. The first archi-
tecture was an end-to-end deep learning network based on the
DenseNet[6] which has proven to be very successful in classi-
fication problems for both scene image and chest x-ray imag-
ing. In particular, a 121-layer DenseNet with weights initial-
ized from a prior training on ImageNet[7] was re-trained on
the raw training images of our dataset and using 73 labels as
output labels for the fully connected layer. Our input images
were resized to the ImageNet standard (224*224*3), and then
centered using the “caffe” style of Keras’s preprocess input
function. The feature-maps of all layers were combined and
saved as a feature representation model in addition to supply-
ing them as input to the fully connected layer for multi-way
classification. In the second architecture, we formed a hy-
brid approach keeping the feature generation layers of deep
learners and combining with an ensemble classifier. This was
based on the rationale that advanced feature selection and
explain capabilities of traditional ensemble classifiers may
be more suitable for such higher grained label recognition.

Fig. 6. Illustration of ROC curves for the 73 label dataset
using (a) DenseNet (b) Deep ensemble classifier.

Specifically, we retained the feature representation model of
the trained DenseNet and replaced the last fully-convolutional
multi-class classification layer in DenseNet with an ensem-
ble classifier. We experimented with three separate boosting
methods for random forests to address our inherent dataset
imbalance, namely, RUS [8], Logit [9], and Subspace [10]
boosting. We used deep trees, with a maximum number of
tree splits equal to the size of our training set. We experimen-
tally optimized our number of learning cycles to 1,000, and
our learning rate to 0.1.

4. RESULTS

The experiments were performed with the newly labeled NIH
dataset of 73 findings. A total of 7942 images were retained
corresponding to the 73 labels that had support of at least 50
images in the collection. A total of 6209 images were used
for training, and 1733 were retained for validation and testing.
First, we generated a baseline result using DenseNet directly
on the dataset. The predicted labels were then used to plot
the ROC curves and area under curve (AUC) was noted. The
resulting ROC curves and the average AUC are shown in Fig-
ure 6a. In the next experiment, we used the hybrid learning
model of DenseNet feature generator with the random forest
classifier. The resulting ROC curves are shown in Figure 6b
using 5-fold cross-validation on a 80-20 split of training and
test data. From this figure, we see that the performance of the
two networks are similar although with more training epochs
and data, it is likely that DenseNet would eventually outper-
form the hybrid classifier (both achieved an average AUC of
0.7). The list findings and the AUC for the second classi-
fier are shown in Table 1 (only the first 32 are shown of the
73 derived labels). We can also observe from the results in
Table 1 that the models in general perform better for higher
level abstraction labels if the number of images for training
are also larger. We conclude from these results that it is pos-
sible to train classifiers to recognize finer distinction labels
of AP chest X-rays. However, the accuracy achieved still re-
mains a function of the size of the labeled training datasets.



5. CONCLUSION

In this paper, we present a new chest X-ray benchmark
database of 73 sentence-level findings seen in AP chest X-
rays. We describe our method of obtaining these findings
through a semi-automated ground truth generation process
from crowdsourcing of clinical annotations.
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