arXiv:1907.00148v1 [cs.CV] 29 Jun 2019

IMPROVED ICH CLASSIFICATION USING TASK-DEPENDENT LEARNING

Amir Bar', Michal Mauda Havakuk?, Yoni Turner®, Michal Safadil, Eldad Elnekave'*

1Zebra Medical Vision Inc.
2Tel-Aviv Medical Center, 3Shaare Zedek Medical Center, “‘Rabin Medical Center

ABSTRACT

Head CT is one of the most commonly performed imaging
studied in the Emergency Department setting and Intracra-
nial hemorrhage (ICH) is among the most critical and time-
sensitive findings to be detected on Head CT. We present
BloodNet, a deep learning architecture designed for opti-
mal triaging of Head CTs, with the goal of decreasing the
time from CT acquisition to accurate ICH detection. The
BloodNet architecture incorporates dependency between the
otherwise independent tasks of segmentation and classifi-
cation, achieving improved classification results. AUCs of
0.9493 and 0.9566 are reported on held out positive-enriched
and randomly sampled sets comprised of over 1400 stud-
ies acquired from over 10 different hospitals. These results
are comparable to previously reported results with smaller
number of tagged studies.

Index Terms— Deep Learning, Segmentation, ICH,
Hemorrhage, Classification

1. INTRODUCTION

Intracranial hemorrhage (ICH) is a critical finding seen in var-
ious clinical circumstances spanning major trauma to spon-
taneous intracranial aneurysmal rupture. Early and accurate
detection is essential in achieving optimal outcomes. An Al-
facilitated first read of CT brains could provide value by de-
tecting subtle bleeds which might go unrecognized, as well as
providing triage-service to prioritize positively-flagged stud-
ies for expert radiologist review.

In recent years, convolutional neural networks (CNN’s)
have been successfully designed to detect various pathologies
in medical imaging [1}, 2, 3| 4]. Previously reported deep-
learning infrastructures for automatic ICH detection have
based ICH prediction upon either the the entire 3D Head CT
volume [5] or each 2D CT slice [6 [7]. While the former
potentially utilizes a larger amount of data, it is at the cost of
relatively weak supervision due to the high dimensionality of
the input volume. The second approach requires a substantial
tagging effort due to tedious annotation of every relevant slice
in the scan.

Jnawali et al [5] assembled a dataset of 40k studies and
preprocessed it to a fixed input size. It was then used for

the training of a 3D convolution [8]] classification pipeline
and reported to have an AUC of 0.86 using a single model.
Additional work was in [6], in which the authors utilized a
large dataset of 6k studies tagged slice-wise by radiologists
for training. To localize the findings, the authors had to an-
notate the slices pixel-wise to create the masks necessary in
order to train a UNet [9] architecture for segmentation. They
report AUC of 0.9419 for the classification part. In [7], the au-
thors used multiple segmentation auxiliary losses to leverage
the pixel-wise information and aggregated the 3D volumetric
decision using LSTM [10].

The present report describes integration of both classifi-
cation and segmentation of an image in a single network, uti-
lizing the pixel-wise prediction to improve the 3D volumet-
ric ICH classification result. BloodNet is a CNN architec-
ture which explicitly incorporates the pixel-wise prediction
through modeling the dependency between the classification
and segmentation task.

Fig. 1. Head CT typical scans. Left to right: Head CT with
contrast, Head CT with bone enhancing reconstruction and
non contrast Head CT. The proposed system operates on the
last type.

2. MATERIALS AND METHODS

For training and validation, 175 non-contrast CT brain stud-
ies with ICH-positive radiology reports were reviewed by at
least one expert radiologist who validated the existence of the
reported ICH and manually segmented it. An ICH-negative
dataset including 102 CTs was also assembled. For valida-
tion we use only positive studies, which contain both positive



Fig. 2. Context is necessary with respect to ICH. Top row:
Parenchymal hemorrhage. Bottom row: calcification.

Table 1. Data

Train Validation
(D 2
Positive 3953 1815
Negative 22122 4141

Every cell represents the number of tagged slices. All slices
were manually pixel wise annotated for positive ICH on 175 ICH

positive and 102 on ICH negative scans.

and negative slices. Testing was performed on two datasets
totaling 1,426 expert-validated studies, including an enriched
(67% ICH positive) and randomly sampled (16% positive) set.
Every study was tagged by a single expert radiologist while
multiple experts participated in the tagging.
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Fig. 3. Single task, classification. Predicting whether an input
has positive indication for ICH.

The present report describes a new pipeline for CT-based
ICH classification intended for enhanced triage. The setup
relies on the learning of both classification and segmentation,
having demonstrated that the segmentation task provides syn-
ergistic support to the ICH classification task. A high level
description of our architecture is described in Figure [3}

To exploit the volumetric nature of ICH, the input number
of slices was set as 5 consecutive axial CT slices, allowing for
better detection of true ICH. We empirically observed that the
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Fig. 4. Multi-task, classification and segmentation. The
shared encoder learns a representation suitable for both tasks.

learned models better distinguish artifacts and hemorrhages,
which may look similar on a single slice but commonly ap-
pear differently over consecutive slices. We show example
for the advantage of such context in Fig 2] Additional prepro-
cessing included the utilization of standard brain-windowing.
Since we empirically observed that a hemorrhage might be
very small, we kept the input slices in the full 512x512 CT
resolution.

Given the input slices we first base our approach on per-
forming classification alone, using the architecture in Figure
[Bl Hence our classification loss is:

1 N
Lclassification = Ezyil CE(ylv yz)

Where y; is the ground truth label, y; is the prediction of
the i-th sample, m is the number of samples and C'E is the
binary cross entropy function:

CE(y.§) = ylogy + (1 —y) - log(1 — §)
Considering the clear advantages of multi-task learning
reported in recent research [11 7], we modified the architec-
ture and added a decoder to enable the multi-task learning
scenario of classification and segmentation (see Figure[d). We
also added an auxiliary segmentation loss:

1 .
Lsegmentation = mzi:12?=1z}gu=10E(yijk7 yijk)

Where h and w are the height and width of input slice,
Yijk is the pixel in the spatial position j, £ of the ith sample.
Our final loss is thus:

L= (1 - )\)Lclassification +A- Lsegmentation

Finally, instead of implicitly using the segmentation infor-
mation as supervision, we explicitly design the architecture to
utilize the segmentation information to support classification.
More specifically, we sum over the decoder network segmen-
tation prediction, multiply by the voxel volume and concate-
nate the approximation of blood in mm? as a feature in the
classification branch.
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Fig. 5. Task dependent, classification is dependent on segmentation. The segmentation branch result probabilities are multiplied
by the voxel volume of the input, summed and finally concatenated to the bottleneck as an additional feature for classification.

To train this architecture, we employ three steps. First,
we train the segmentation branch alone. Then, we freeze all
weights and train only the last fully connected layer of the
classification branch. Finally, we train the entire architec-
ture for both classification and segmentation in an end-to-end
manner. Respectively, we use A = 1, A = 0, A = 0.5 in the
loss equation. In all our experiments we use the Adam opti-
mizer with learning rate of le — 4 and exponential decay of
0.96. All architectures were implemented in Tensorflow and
trained using 4 Nvidia Tesla K80 GPUs. In inference, given
a study, we compute the probability for ICH over every slice
and use the maximal probability as the study probability for
ICH.

3. RESULTS

We choose the best architecture using AUC over validation
set. Table 3] provides comparison between models. We then
evaluated on two different held out test sets, a positive en-
riched and a randomly sampled sets. The advantage of a posi-
tive enriched set is in representation of different types of ICHs
as well as ICHs which are less prevalent. To collect this set
we used a textual search over radiology reports. Since such
data collection method might present a bias towards a specific
search criteria, we also collected a randomly sampled set. We
assume that in the randomly sampled set the cases in radi-
ologists daily routine are well represented. We report AUCs
of 0.9493 and 0.9566 over the enriched and randomly sam-

Table 2. Test sets results

#Studies %ICH  AUC
(D 2 3)
Test-Enriched 608 67%  0.9493
Test-Random 818 16%  0.9566

Every cell represents the number of tagged studies.
These studies were tagged only on study level. These
studies were held out during training and validation
with respect to patient.

pled tests set. Table [2]provides further information. A man-
ual review of false positives showed propensity to aberrantly
misclassify calcified hemangiomas, dystrophic parenchymal
calcifications and basal ganglial calcifications.

4. DISCUSSION

This work provides further evidence to support the approach
of utilizing pixel wise annotated data for classification. How-
ever, our results indicate that relying on the multi-task setting
alone might not be enough to yield a significant improvement
in performance for classification. In BloodNet, we explicitly
model a segmentation dependent classification, resulting in
design that fully leverages the dense pixel wise supervision to
boost classification performance. It has the advantage of both



Table 3. Comparison between models

Network AUC 0.95CI
9] 2
i. Baseline
ResNet50 [12] 0.9159 [0.9081, 0.9236]
ii. BloodNet
Single task, classification 0.9453 [0.9395, 0.9512]
Multi task, classification and segmentation 09411 [0.9352, 0.9471]
Task dependent, segmentation dependent classification 0.9658 [0.9611, 0.9704]

Ablation studies of results over validation set slices. Mean AUC and CI are are computed
using bootstrap (n = 10%).

[&

Fig. 7. Selected Segmentation results example.

classification and localization of the acute finding and while
classification is most important in a triage system, the local-
ization provides reasoning hence crucial for a radiologist to
have a better understanding of the prediction.

Fig. 8. Visualizations of negative studies which received high
probability. Mengiomas and calcifications.
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