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ABSTRACT

Computer Tomography (CT) is the gold standard tech-
nique for brain damage evaluation after acute Traumatic Brain
Injury (TBI). It allows identification of most lesion types and
determines the need of surgical or alternative therapeutic
procedures. However, the traditional approach for lesion
classification is restricted to visual image inspection. In this
work, we characterize and predict TBI lesions by using CT-
derived radiomics descriptors. Relevant shape, intensity
and fexture biomarkers characterizing the different lesions
are isolated and a lesion predictive model is built by using
Partial Least Squares. On a dataset containing 155 scans (105
train, 50 test) the methodology achieved 89.7% accuracy over
the unseen data. When a model was build using only texture
features, a 88.2% accuracy was obtained. Our results suggest
that selected radiomics descriptors could play a key role in
brain injury prediction. Besides, the proposed methodology
is close to reproduce radiologists decision making. These
results open new possibilities for radiomics-inspired brain
lesion detection, segmentation and prediction.
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1. INTRODUCTION

Traumatic Brain Injury (TBI) is a complex disease process
that encompasses a whole spectrum of different patholo-
gies. In the acute phase after injury, non-contrast Com-
puted Tomography (CT) is the most commonly used imaging
modality. It can detect most abnormalities, but is espe-
cially important for identifying the presence of large extra-or
intra-axial space-occupying lesions (i.e, subdural hematomas,
epidural hematomas or contusions). For instance, extra-axial
hematomas that cause mass effect (i.e, basal cistern com-
pression and midline shift) may need urgent neurosurgical
evacuation. On the other hand, contusions may require a
non-surgical treatment approach. In this regards, detection
and classification of these lesions is of paramount importance
in the medical decision-making process [[1].

Radiomics, “the conversion of digital medical images into
mineable high-dimensional data” [2] takes advantage of
image analysis techniques for describing underlying phys-
iopathology in medical scans. As a result, a descriptive

feature vector is obtained and subsequent interpretation by
computer driven techniques is performed. For dealing with
the high-dimensional space, dimensionality reduction meth-
ods turns crucial. In the last few years, the multivariate Partial
Least Squares (PLS) method for analyzing radiomics-derived
descriptors has been explored. The technique is extensively
used in the OMIC'S field, since it is suitable for problems
where the number of features is larger than the number of
samples.

In this work, we aim to characterize and predict TBI lesions
using CT-derived descriptors. The main contributions of this
work are 7) identification of distinctive radiomic biomarkers
characterizing brain lesions, i7) fitting of PLS models that
accurately predict lesion classes and 7i7) exploring whether
texture-based models outperform shape and intensity-
based ones for the desired task.

2. MATERIALS AND METHODS

2.1. Database

In this work, data from the CENTER-TBI study (www.center-
tbi.com, NCT(02210221) coming from more than 50 academic
and non-academic centres in 20 countries was used. CT vol-
umes were obtained from several scanners from all major
manufacturers, including General Electric, Siemens, Philips
and Toshiba. Images were acquired following several acqui-
sition and reconstruction parameters, with variations on slice
thickness, pixel spacing and scanner settings, among others.
A sub-cohort of 3D volumes was randomly chosen, including
three type of brain mass lesions: ¢) epidural hematoma (class
1), i7) acute subdural hematoma (class 2) and 4i4) contusion
(class 3). 105 scans (train set) were used for data analysis,
characterization, and model fitting. Besides, we included 50
extra scans (test set) for validating our models. The training
(test) set contains 170 (69) annotated lesions, with 49 (20) in
class #1, 54 (20) in class #2 and 67 (29) in class #3. Volume’s
slices were delineated by three trained operators, supervised
by an experienced neuroradiologist. Hyperdensities were
annotated using 3D Slicer (https://www.slicer.org/).
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2.2. Pre-processing

With the aim of extracting robust biomarkers insensitive to
scan acquisition and reconstruction parameters, all scans
were resliced into an homogenous voxel dimension of [1x1x1
mm?]. As demonstrated in [3]], voxel resampling is a strongly
recommended step for obtaining reproducible radiomic de-
scriptors.

2.3. Radiomics Feature Extraction

For each lesion present in the scan we extracted radiomic
features using the ground truth segmentations. When a vol-
ume contained more than one type of lesion, separate de-
scriptors for each of them were considered. With this aim,
the open-source PyRadiomics [4] library was used and 105
features from the original volumes were obtained grouped
as follows: %) Shape (13), 4¢) First Order Statistics (FOS,
18), #ii) Gray-level Co-occurrence Matrix (GLCM, 23), iv)
Gray level Difference Matrix (GLDM, 14), v) Gray-level Run
Length Matrix (GLRLM, 16), vi) Gray-level Size Zone ma-
trix (GLSZM, 16) and vit) Neighborhood Gray-Tone Differ-
ence Matrix (NGDM, 5).

Afterwards we built the so called feature X (N x 105) and
responses Y (/V x 3) matrices (/V being the number of lesions
in the training set).

2.4. Data Analysis: Partial-Least-Squares

With the aim of characterizing brain lesions using radiomics
and generating a predictive TBI model, we used the multivari-
ate PLS technique. PLS discriminant analysis (PLS-DA) is a
flexible tool used for descriptive and predictive modelling, as
well as for discriminant feature selection. The algorithm in-
corporates dimensionality reduction with discriminant analy-
sis for high-dimensional data interpretaion. In a nutshell, the
algorithm involves two steps: i) PLS latent variables (LVs)
construction and ii) predictive model building [5]. The LVs
are computed as linear combinations of the independent X
variables, XW, where the loading weights in W are chosen
in such a way that the corresponding LVs have maximal co-
variance with the responses in the Y matrix. For multiclass
problems, Y is a dummy matrix encoding the class member-
ship information. After building the model, the responses of
unknown class data can be predicted from their independent
variables [6]].

2.4.1. Feature Selection

For finding informative and distinctive markers allowing
classes discrimination, the Variables Importance on Predic-
tion (VIP) criterion was used. VIP scores help in detecting
and ranking those features contributing in the model fitting.
For each variable, the VIP score is equal to the accumulated
weights (w) over all selected LV’s. For feature selection it

has been widely suggested to retain those features with VIP’s
greater than the unity [6].

2.4.2. Model Fitting

In this work, firstly a model using all the considered features
was fitted. Secondly, by using the above explained VIP crite-
rion, the model was retrained with the retained features only.
Model fitting was performed over the training set in a 10-fold
cross-validation strategy by changing the number of LV’s and
by assessing the classification error rate. The model that mini-
mized the classification error was preferred. Afterwards, PLS
models were validated by predicting the unseen test samples.

2.5. Experiments

With the aim of assessing the feature-class effect for predict-
ing the lesions, PLS models were assessed under different fea-
ture combinations.

e Experiment 1 All features considered.
e Experiment 2 Feature selection over all feature classes.

e Experiment 3 Feature selection considering only
Shape descriptors.

e Experiment 4 Feature selection considering only
Shape and FOS descriptors.

o Experiment 5 Feature selection considering only
texture (GLCM, GLDM, GLRLM, GLSZM, NGDM)
descriptors .

Selected experiments were chosen on the basis of com-
paring radiologist’s observable descriptors (shape and FOS)
and assessing their importance on lesion labelling. On the
other hand, we explore as well the models behaviour under
the inclusion of more complex computational descriptors.

2.6. Performance and statistics

The most relevant per-class descriptors in terms of VIP scores
were assessed by means of the non-parametric Kruskal-Wallis
test. When p-values exhibited statistical significance, the
Dunns test for multiple comparisons was performed. The
Benjamini & Hochberg procedure for controlling the false
discovery rate was applied. Two-tailed tests with a 0.05 sig-
nificance level were used. For addressing mass lesion classi-
fiers using PLS-DA, accuracy, sensitivity and specificity were
used as performance metrics.

3. RESULTS

A summary of the predictive models fitness obtained for each
experiment is shown in Table [} As expected, the model
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Table 1. Fitted models summary and number (%) of selected features.

Features
Model Considered Selected
Exp ER LV Total Total Shape FOS GLCM GLDM GLRLM GLSZM NGDM
#1 0.12 5 105 105 (100) 13 (100) 18 (100) 23 (100) 14 (100) 16(100) 16(100) 5 (100)
#2 0.10 7 105 40 (38.1) 12(92.3) 844.4) 8347 1(7) 743.7) 4(Q5) 0(0)
#3 025 4 13 4 (30.7) 4 (30.7)
#4 015 7 31 11 (35.5) 6(46.1) 527.7)
#5 0.13 15 74 17 (22.9) 6(26.1) 1(7) 6(37.5) 4(Q5) 0(0)
Note: Exp: Experiment; ER: Error Rate.
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Fig. 1. Common selected features boxplots. Classes 1, 2 and 3 belong to epidural hematoma, acute subdural hematoma

and contustion. NU: Non-uniformity. *: significant p-value.

where feature selection was conducted considering all de-
scriptors (Exp #2) obtained the lowest error-rate. Besides,
it outperformed the model where no feature selection was
applied (Exp #1), suggesting that non-explanatory features
have been discarded.

The worst performing model in terms of errors was the one
fitted in Exp #3 (only shape information considered). It is
observable that these features where frequently chosen in
the different experiments (12 out of 13 shape features are
also used by the best model, namely Exp #2). Despite being
frequently chosen, our results suggest that shape descriptors
are not sufficient for distinctively characterizing the lesion
classes. However, when F'OS features were added to the
shape model, the error-rate considerably decreased. It is
worth mentioning that these are observable features for radi-
ologists, having a valuable meaning for lesion labelling.
When texture features were only used for fitting the model

(Exp #5), a low error-rate was obtained. Among all feature
classes, GLSZM and GLCM features were preferred. The
NGDM features have never been selected, suggesting non
informative descriptors for the considered task.

Boxplots of the shared retained features among the differ-
ent models are shown in Fig. [T} It is possible to appreciate
that all these features exhibited statistical significance among
some or all groups. Considering radiological interpretable
descriptors, Sphericity showed to be a distinctive one. The
results are supported by lesion morphology configurations,
namely that subdural ones are less spherical than epidural and
contusion ones [1l]. On the other hand, Sur face Areas were
greater for subdural hematoma when compared against the
other lesions.

Table 2] shows achieved classification performance on the un-
seen data. The best performance was obtained for model #2,
which improved by ~ 7% on accuracy the model without fea-
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ture selection. When shape information was used for fitting
the model, a low 72.1 % accuracy was obtained. Inclusion
of FFOS descriptors were able to considerably improve the
model, by performing ~ 10% better on accuracy terms. For
Exp #5, texture features were able to almost reproduce the
best performing model by achieving 88.2% accuracy. This
result suggests texture features encode relevant information
for differentiating among TBI lesions. The importance of this
latter model relies on its independence from shape descrip-
tors. Since texture analysis can be performed patch-wise, the
technique suggests potential for lesion detection, segmenta-
tion and classification.

Table 2. Classification performances.
Se Sp
Exp Acc C#1 C#2 C#3 C#l C#2 CH#3
#1 823 85 89.5 759 89.6 89.8 949
#2  89.7 80 947 931 100 89.8 949
#3  72.1 60 947 655 958 735 89.7
#4 838 75 89.5 862 979 857 923
#5  88.2 85 94.7 862 958 939 923
Note: Exp: Experiment; Acc: Accuracy (%); Se: Sensitivity
(%); Sp: Specificity (%); C#: Classes.

4. DISCUSSION AND CONCLUSIONS

In this work several PLS models using radiomic CT features
were compared. Three different brain lesion types were con-
sidered and characterized by means of different descriptors.
We isolated several radiomarkers that may play a key role
in discrimination of TBI lesions, all behaving differentially
among classes (p-val significant). We devised, as well, an
automatic method for classifying the lesions. When using
selected descriptors chosen over all feature types, a 89.9%
classification accuracy over the test set was achieved. Our
results suggest that radiomic features are very close to repro-
duce radiologists decision making. When only using shape
descriptors, it was found that Sphericity, Sur face and the
Sur face to Volume Ratio play an important role. How-
ever, shape features were not enough to accurately discrimi-
nate the lesion types. Since intensity and histogram derived
metrics represent crucial information in medical imaging, we
included F'OS and Shape features in our models. Even by
achieving a consistent improvement (~ 10% greater accu-
racy), these features were not able to reproduce the obtained
results with the whole database. An important result of this
work regards the potential and capability of texture descrip-
tors for characterizing the lesions. We were able to build a
model using only texture information which predicts the test
set with 88.2% accuracy, behaving almost as the model that
included all features. This result is relevant since it suggests
texture CT information might help in lesion detection, multi-
class segmentation and classification. Besides, it suggests the

existence of non-observable data structures helping in dis-
criminating TBI damage. Potentially, the developed models
could be used for performing automatic quality control of seg-
mented and predicted lesions. It is important to keep in mind
that radiological inspired markers might be preferred for clin-
ical applications when conducting these tasks.
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