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ABSTRACT

Pap smear testing has been widely used for detecting cervical
cancers based on the morphological properties of cell nuclei
in microscopic image. An accurate nuclei segmentation could
thus improve the success rate of cervical cancer screening. In
this work, a method of automated cervical nuclei segmenta-
tion using Deformable Multipath Ensemble Model (D-MEM)
is proposed. The approach adopts a U-shaped convolutional
network as a backbone network, in which dense blocks are
used to transfer feature information more effectively. To in-
crease the flexibility of the model, we then use deformable
convolution to deal with different nuclei irregular shapes and
sizes. To reduce the predictive bias, we further construct
multiple networks with different settings, which form an en-
semble model. The proposed segmentation framework has
achieved state-of-the-art accuracy on Herlev dataset with Zij-
denbos similarity index (ZSI) of 0.933+0.14, and has the po-
tential to be extended for solving other medical image seg-
mentation tasks.

Index Terms— Cervical nuclei segmentation, Pap smear
test, Dense blocks, Deformable convolution, Ensemble mod-
eling

1. INTRODUCTION

Pap smear test is extensively used in gynecology to screen
premalignant and malignant diseases in the cervix. The 5 typ-
ical abnormal results [1] of this test include Atypical squa-
mous cells of undetermined significance (ASC-US), Low-
grade squamous intra-epithelial lesion (LSIL), High-grade
squamous intra-epithelial lesion (HSIL), Atypical squamous
cells, cannot exclude HSIL (ASC-H), and Atypical glandular
cells (AGC). All these results point to symptoms accompany-
ing with different levels of nuclear disorders, which contain
substantial diagnostic information for cervical diseases. In
order to accurately analyze this information for efficient cer-
vical disease screening, an accurate segmentation of nuclei is
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necessary.

Methods for segmenting cervical nuclei include two ma-
jor types: image-understanding approaches and deep-learning
based approaches. Examples of image-understanding ap-
proaches are K-means clustering [2]], watersheds [3]], adaptive
thresholding [4], active contour model (snake) [S], morpho-
logical operations [6] and graph-cuts [7]. An obvious draw-
back of these methods is their insufficiency to fully describe
cervical nuclei, as the methods are often based on an incom-
plete hand-crafted set of low-level features. In addition, the
low-level features themselves lack detailed structural infor-
mation and lead to poor performance in segmentation. Thus,
to guarantee the quality of segmentation, multiple methods
are required for different types of cervical nuclei, and so do
several pre- and post-processing. However, the long pipe-
lines and the complex process flow suffer from instability.
Any segmentation errors in the intermediate steps may result
in a failure of the entire segmentation process.

On the other hand, several research groups have attempted
to perform cervical nuclei segmentation using deep learning
frameworks, as encouraged by the recent vast success of deep
learning approaches across many different computer vision
tasks. Song Y et al. present a supervised deep learning
network based on super-pixel strategy for segmenting cervi-
cal cytoplasm and nuclei [8]. The same group also reports
a nuclei segmentation by combining a multiscale convolu-
tional network (MSCN) and graph-partitioning approach [9].
Sharma B. et al. present a way of using fuzzy c-means (FCM)
clustering and back propagation neural network (BPNN) for
segmenting cervical images, where the FCM clustering re-
sults serve as extra features of BPNN [10]. Zhang et al.
propose a two-stage segmentation approach that combines
fully convolutional networks (FCN) and dynamic program-
ming (called FCN-G), in which FCN results are treated as
initials of graph-based segmentation [11]. These methods
substantially improve segmentation accuracies as opposed
to traditional image-understanding approaches, but still suf-
fer from pipelined process and usually have task-specific or
data-specific network structures.
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Fig. 1. Flowchart of the experimental procedure.
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Fig. 2. Illustration of the architecture of a Dense block.

In order to solve the aforementioned problems, we pro-
pose segmenting cervical nuclei via Deformable Multipath
Ensemble Model (D-MEM) based on novel deep neural net-
works. Building a U-shaped network (Unet), we adopts dense
block structure with deformable convolutions to improve the
ability of recognizing detailed structures in cytological im-
ages. A parallel ensemble strategy is introduced in order to
reduce the predictive bias from training a single network.
The model is also trained end-to-end without pre- and post-
processing, which avoids the issues intrigued by pipelined
structures. The proposed D-MEM is evaluated on the Herlev
dataset[12] and shows superior performance.

2. METHODS

Three important model structures are introduced to improve
the accuracy in the proposed D-MEM: 1) Dense blocks are
exploited, which improve the information flow between neu-
ral network layers and show better capability of feature ex-
traction, and also feature reuse. 2) Since the abnormal cer-
vical nuclei may display irregular shape rather than circular
shape of normal nuclei, the model needs to be more sensi-
tive to subtle changes of the objects. We thus add deformable
convolutions to capture detailed structures of nuclei. 3) A
single network may suffer from predictive bias and result in
coarse segmentation during inference. To further improve the
segmentation process, we organize the model in a multi-path
fashion, which trains multiple networks simultaneously with

different settings and integrates the results using a majority
voting strategy. Fig [I] shows the flow chart of this method
comprises two major parts: contracting path and expansive
path.

2.1. Dense Blocks

Traditional convolutional layers form a sequential feed-
forward network structure, in which the output of the Ith
layer is taken as the input of the (I + 1)th layer. The tran-
sition can be represented as X; 11 = H;y1(X)), where X;
and X ;1) denote inputs of /th layer and (I + 1)th layer,
respectively; H;, 1 denotes the mapping.

Under this sort of network architecture, information is
transferred by feed-forward pass and model weights are up-
dated by back propagation. However, the architecture suffers
from occasional gradient vanishing issues. ResNets attempt
to solve this issue with skip-connections that bypass the con-
volution of feature maps (with non-linear activation) with an
identity transition, X; 11 = H;+1(X;) + X;.

The skip-connection allows the gradient directly flows
through different layers, which maintains the information
magnitude (avoiding information vanishing during training
process). To further enhance the connection between layers,
dense blocks are introduced. As shown in Fig[2] the [th layer
receives the feature maps of all preceding layers in the same
dense block,

Xy = H([Xi-1, ..., X1, Xo]) 6]

where [X;_1, ..., X1, Xo] represents the concatenation of the
feature maps from the preceding layers. In this case, informa-
tion transition is more compact.

2.2. Deformable Convolutional Layers

An essential task of our proposed model is to segment cervi-
cal nuclei with irregular shapes and different sizes. However,
the traditional Unet is inherently limited for dealing with ob-
ject transformation due to its regular convolutional kernel of
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Fig. 3. Illustration of the deformable convolution with a ker-
nel size of 3. (a) normal convolution; (b) deformable convo-
lution with arbitary offsets; (c-d) special case of deformable
convolution.

fixed shape. The deformable convolution is thus introduced to
enhance the transformation modeling capability for adjusting
the receptive fields of the convolutional kernels [[13]].

In classic CNN architecture, as shown in the Fig Eka),
the regular convolutional grid R of 3x3 kernel is defined as
R={(-1,-1),(-1,0),...,(0,1),(1,1)}. The value of out-
put feature map (y) at position P, is strictly computed as a
weighted summation depending on the grid:

y(Po) = > w(Py)-x(Py+ Py) 2
P,eR

In the deformable convolution, small offsets AP, (n =
1,2,..., N) are introduced for adjusting the spatial locations
of the convolutional inputs (see Fig [3(b-d)). The value of
output feature map at position Py could then be defined as:

y(Po) = > w(Py)-x(Pp) 3)

P,eR

where P, represents a fractional position (P, = Py + P, +
AP,) and z(P,,) is computed using bilinear interpolation:

#(Py) = > Glg, Pn) - 2(q) @)

where ¢ enumerates all integral spatial locations in the neigh-
borhood of P,,, and G(-) is the bilinear interpolation kernel.
Similar to the attention mechanics, the deformable convolu-
tion networks are able to optimize the offsets for subtle struc-
ture by augmenting the spatial sampling locations on feature
maps [14].

2.3. Ensemble Modeling
2.3.1. Network architecture

As shown in Fig ] the main architecture comprises two ma-
jor parts: contracting path and expansive path. In the con-
tracting path, we have designed N encoding stages (N = 5
in the experiment). Each stage has three components: 1) A
dense block, which is used for feature extraction; 2) A con-
catenation operation that gathers all feature information from
the preceding dense block; 3) A transition down layer, which
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Fig. 4. Diagram of main architecture of Unet with dense
blocks.

doubles the size of receptive fields while generating coarser
feature maps. In the expansive path, corresponding decod-
ing stages are constructed consisting of transition up layer,
concatenation operation and dense block, in order to progres-
sively recover the resolution of feature maps. Skip connec-
tions are added between corresponding stages of contracting
and expansive paths, which helps to preserve contextual in-
formation for better object recognition.

2.3.2. Multi-path Ensemble Model

During the experiment, we discover that the model behaves
differently when adding deformable convolutional layers in
contracting and expansive paths, respectively. Using model
visualization tools, we find that the feature maps in contract-
ing path are more related to contextual information and those
in expansive path are more related to positional and mor-
phological information. Therefore, as shown in Fig [T} we
train three networks in a multi-path fashion: 1) the plain net-
work; 2) a network with deformable convolutions in contract-
ing path; 3) a network with deformable convolutions in ex-
pansive path. We do not construct a network by replacing all
normal convolutional layers with the deformable version due
to the excessive computational burden.

2.4. Model Training and Predicting

As described in [[11], there exists substantial difference be-
tween abnormal and normal nuclei in shape and size. We thus
separate the nuclei class into abnormal (small) and normal
(large) classes, resulting in four classes for D-MEM training
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Fig. 5. Examples of the segmentation results. (a) Pap smear images, (b) Manual annotations, (c) Segmentation results of
Unet, (d) Segmentation results of Dense-Unet, (e) Segmentation results of D-Con, (f) Segmentation results of D-Exp, (g)

Segmentation results of D-MEM.

Method ZS1 Precision Recall
Unsupervised[15] 0.89+0.15 0.884+0.15  0.93+0.15
FCM[16] 0.80+0.24 0.854+0.21  0.834+0.25
P-MRF[17] 0.934+0.03 — —
SP-CNN[18] 0.90 0.89 0.91

Our Method 0.933+0.14 0.946+0.06 0.984-+0.00

Table 1. Comparison of the state-of-the-art methods and pro-
posed method

and predicting. The proposed D-MEM is trained end-to-end
and pixel-to-pixel. During the inference/prediction stage, the
model produces a 4-channel prediction map, each for one of
the classes (background, cervical cytoplasm, normal nuclei
and abnormal nuclei). The final nuclei segmentation is ob-
tained by combining the abnormal and normal nucleus results.

3. EXPERIMENT AND RESULTS

The Herlev dataset consists of 917 cytological images from
Pap tests. The original images are manually segmented into
4 labels: background, cytoplasm, nuclei and unknown re-
gions (in this study, the unknown regions are treated as back-
ground). All images are normalized to have zero mean with
unit variance intensity and are resized to a size of 256 x256.
We train our model on a single NVIDIA GTX 1080ti GPU.

Table [T]shows the quantitative comparison of the start-of-
the-art methods and our proposed method in terms of mean (&
standard deviation) of ZSI, precision and recall for all images
from Herlev dataset. The overall processing time of D-MEM
is less than 0.1 seconds.

We also compare the evaluation metrics computed based
on different model settings. As shown in Table[2] dense block,
deformable convolutional layers and ensemble modeling are
able to improve the segmentation of cervical nuclei. A par-
allel ensemble strategy can reduce the predictive bias from

Methods  Unet Dense-Unet D-Con D-Exp D-MEM
ZS1 0.869 0.910 0918 0917 0.933
Precision  0.897 0.893 0.888  0.894 0.946
Recall  0.879 0.956 0972  0.961 0.984
F-score  0.888 0.924 0928  0.926 0.965

Table 2. Evaluation of different model settings. (D-Con, D-
Exp, D-MEM stand for the models with deformable convo-
lution on contracting path, deformable convolution on expan-
sive path and ensemble modeling, respectively.)

training a single network Fig [5] shows some examples of the
segmentation results of our proposed method.

4. CONCLUSION

In this work, we present a novel deep-learning framework for
automated segmentation of cervical nuclei. We exploit dense
blocks to overcome the information vanishing problem in tra-
ditional network structures. We add deformable convolutions,
so that the model could segment objects with different shapes
and sizes more accurate. We also introduce ensemble mod-
eling strategy to reduce the predictive bias from training a
single network (or model setting). All these designs show im-
provement on the overall accuracy of segmenting cervical nu-
clei. The experimental results demonstrate the superior per-
formance of the proposed method.
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