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Abstract. Feature similarity measures are indispensable for joint image
reconstruction in multi-modality medical imaging, which enable joint multi-modal
image reconstruction (JmmIR) by communication of feature information from one
modality to another, and vice versa. In this work, we establish an image similarity
measure in terms of image edges from Tversky’s theory of feature similarity in
psychology. For joint bi-modal image reconstruction (JbmIR), it is found that
this image similarity measure is an extended Mumford-Shah functional with a
priori edge information proposed previously from the perspective of regularization
approach. This image similarity measure consists of Hausdorff measures of the
common and different parts of image edges from both modalities. By construction,
it posits that two images are more similar if they have more common edges and
fewer unique/distinctive features, and will not force the nonexistent structures
to be reconstructed when applied to JbmIR. With the Γ-approximation of the
JbmIR functional, an alternating minimization method is proposed for the JbmIR
of diffuse optical tomography and x-ray computed tomography. The performance
of the proposed method is evaluated by three numerical phantoms. It is found
that the proposed method improves the reconstructed image quality by more than
10% compared to single modality image reconstruction (SmIR) in terms of the
structural similarity index measure (SSIM)

Keywords: Single-modal image reconstruction (SmIR), joint multi-modal image
reconstruction (JmmIR), joint bi-modal image reconstruction (JbmIR), image
similarity measures, extended Mumford-Shah functional, diffuse optical tomography
(DOT), x-ray computed tomography (XCT).

‡ Part of the work was conducted while Di He was a PH.D student of Peking University.
§ Part of the work was conducted while Thomas Page was a PH.D student of University Breman
and visiting student of Peking University.

http://arxiv.org/abs/1810.06203v1


Joint bi-modal image reconstruction 2

1. Introduction

Biomedical imaging aims at visualizing structural or functional information nec-
essary for medical research and clinical diagnosis. Each imaging modality can
provide images of one particular physical, physiological, or biological distribution.
Multi-modality medical imaging technique is to combine multiple imaging modal-
ities into one hybrid imaging system, such as PET/MRI [Judenhofer et al., 2008,
Catana, 2017], PET/XCT [Cherry, 2009, Bockisch et al., 2009, Delbeke et al., 2009,
Even-Sapir et al., 2009, Kaufmann and Di Carli, 2009], SPECT/XCT [Cherry, 2009,
Bockisch et al., 2009,Delbeke et al., 2009,Even-Sapir et al., 2009,Kaufmann and Di Carli, 2009],
XCT/MRI [Wang et al., 2015], DOT/MRI [Panagiotou et al., 2009] and DOT/XCT
[Yuan et al., 2010,Boas, 2014,Deng et al., 2015,Baikejiang et al., 2017], BLT/DOT/XCT
[Yang et al., 2015], and an omni-tomography system of multiple modalities
[Wang et al., 2012].‖ Hybrid multi-modality imaging systems can visualize anatomi-
cal and functional structures simultaneously, improve the overall imaging performance,
especially avoiding the tempo-spatial artifacts because of scanning with different de-
vices at different time and positions [Townsend, 2008]. It offers significant diagnostic
advantages that cannot be achieved by a single modality [Steiner, 2007]. Moreover, if
hybrid multi-modality imaging systems are perfectly calibrated, image registration is
not necessary. Multi-modality medical imaging within one hybrid imaging system is
called hardware fusion in [Townsend, 2008].

For single-modal image reconstruction (SmIR), theories as well as algorithms have
already been well developed [Natterer et al., 2002,Scherzer, 2010,Censor et al., 2008].
Image reconstructions for hybrid multi-modality imaging systems can be conducted
in several ways. The first approach is that all the image reconstructions are
conducted separately by multiple SmIRs without sharing information across imaging
modalities, which is a simple application of multiple SmIRs for each modality. The
second approach is that all the image reconstructions are conducted sequentially by
using reconstructed images to guide the next image reconstruction. The sequential
reconstructions are usually started from high resolution imaging modalities such as
XCT or MRI. The structural information of reconstructed images is used to guide
the next reconstructions by applying structural similarity. This approach is based on
the observation that images of the same object possess similar structural information,
especially at key structures or strong image edges, though with different contrasts
from different modalities, because they are images of the same anatomical structure.
This approach is called model fusion in [Haber and Gazit, 2013] or software fusion

in [Townsend, 2008]. The third approach is that all the image reconstructions are
jointly conducted by sharing reciprocally structural information from one modality to
another, and vice versa. This is called joint inversion in [Haber and Gazit, 2013] and
joint multi-modal image reconstruction (JmmIR) in this paper. For the joint bi-modal
image reconstruction such as DOT/XCT in this paper, it is called joint bi-modal image
reconstruction (JbmIR).

JmmIR can be achieved by using iteratively model fusion with an appropriate
image similarity measure of structural information in certain feature space for images
of the underlying modalities [Haber and Gazit, 2013]. Given such an image similarity

‖ The abbreviations are as follows in the order of appearance: positron emission tomography (PET),
magnetic resonance imaging (MRI), x-ray computed tomography (XCT), single-photon emission
computed tomography (SPECT), diffuse optical tomography (DOT), bioluminescence tomography
(BLT).
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measure, the image structural feature from one modality can guide the reconstruction
and help to improve the image quality of another modality, and vice versa, in one
joint reconstruction process, mostly in an alternatively iterative manner. Model fusion
only applies the structural information from one reconstructed image unidirectionally
to improve the next reconstruction, but not vice versa. Unlike model fusion, the
structural information of images in a JmmIR process is not from an image already
reconstructed, but is built up progressively during the joint reconstruction process
and applied reciprocally among images of underlying modalities. It is expected that
JmmIR can be jointly performed with enhanced image quality but less measured data
via the reciprocal communication of structural feature information. Nevertheless, the
success of JmmIR relies on both the representation of image structural features of
different modalities and the similarity measure between the features.

Image edge is the fundamental representation of structural information of image
[Marr, 1982]. In this work, we derive an image similarity measure of image edges from
Tversky’s theory of feature similarity in psychology and apply it to the JbmIR for
DOT and XCT. For JbmIR, it is found that the derived image similarity measure
is relevant to the extended Mumford-Shah functional with a priori edge information
proposed previously for model fusion from the perspective of regularization approach
in [Page, 2015]. This image similarity measure consists of Hausdorff measures of
the common and different parts of image edges from DOT and XCT, and can be
approximated with edge indicator functions by the Γ-convergence theory. With the
Γ-approximation of the JbmIR functional, an alternating minimization method is
proposed for the JbmIR of DOT and XCT. The performance of the proposed method
is evaluated with three numerical phantoms. It is found that the proposed method
improves the image quality by more than 10% in terms of the structural similarity
index measure (SSIM) for both XCT and DOT.

The structure of the paper is as follows. We first review the previous work on
model fusion and JmmIR in § 2. Then in § 3 we derive an image similarity measure
of image edges from Tversky’s theory of feature similarity in psychology and propose
a method for JbmIR based on image edge in § 4. In § 5 we propose a heuristic Γ-
approximation for the proposed JbmIR method. In § 6 we apply the JbmIR method
to the JbmIR of XCT and DOT with an alternating minimization algorithm for the
implementation of the method. In § 7, we perform numerical experiments with three
phantoms with single modal image reconstruction with the Mumford-Shah (SmIR-
MS) regularization with our JbmIR algorithm (JbmIR-MS). We discuss the results,
relevant issues and future work in § 8. We conclude this paper in § 9.

2. Related work

Since JmmIR can be achieved by using iteratively model fusion, we review the previous
methods for model fusion and discuss the challenges for JmmIR in this section. The
following classification of methods is based on the major characteristics of methods,
and is used to address the challenges for JmmIR, but is not intended to be a strict
classification. There are certainly overlaps among the classifications, e.g., derivatives
or its discretization, finite differences, are used explicitly or implicitly in almost all
the methods.
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2.1. Segmentation-based model fusion

For model fusion with MRI or CT, image edges from MRI or CT are used to
replace the line process in the Gibbs distribution of [Geman and Geman, 1984]. This
approach is first used for the reconstruction of PET or SPECT [Leahy and Yan, 1991,
Fessler et al., 1992,Gindi et al., 1993]. If the edge information from MRI is imperfect
and if the edge process is improperly weighted, using such information “blindly”
can even lead to artifacts [Fessler et al., 1992,Zhang et al., 1994,Bowsher et al., 1996].
In [Bowsher et al., 1996], a simultaneous segmentation and reconstruction method
for emission computed tomography (ECT) image by incorporating high-resolution
anatomical information such as CT or MRI is proposed and evaluated with SPECT
and MRI. Higher prior probabilities are assigned to ECT segmentations in which
each ECT region stays within a single anatomical region in this incorporation
[Bowsher et al., 1996]. In [Sastry and Carson, 1997] , a different method for the
incorporation of anatomical information into PET image reconstruction is proposed:
segmentations of MRI images are used to assign tissue composition to PET image
pixels, while PET images are modeled as the sum of activities of each tissue type,
weighted by the assigned tissue composition.

If segmentation from a high resolution imaging modality is available, a

priori structural information is used for DOT, as the weight for an anisotropic
regularization to preserve the edges in the DOT image under reconstruction in
[Douiri et al., 2007]. The idea of [Douiri et al., 2007] is later applied for PET in
[Chan et al., 2009] and for SPECT in [Kazantsev et al., 2012,Dewaraja et al., 2010].
For the model fusion of DOT with XCT, a similarity measure with a
Laplacian-type smoothing operator within each region is proposed to average the
DOT image within a region, respectively, while allowing discontinuity between
different regions. [Brooksby et al., 2005,Brooksby et al., 2006,Yalavarthy et al., 2007,
Baikejiang et al., 2017]. In [Fang et al., 2010, Boas, 2014, Deng et al., 2015], an
empirical compositional relationship between the x-ray intensities for adipose and
fibroglandular tissue is further proposed with the segmentation information from
XCT, and used to guide the reconstruction of DOT in [Fang et al., 2010,Boas, 2014,
Deng et al., 2015]. ¶

This approach requires both accurate anatomical image segmentation and regis-

tration [Fessler et al., 1992,Gindi et al., 1993,Ouyang et al., 1994,Sastry and Carson, 1997].

2.2. Segmentation-free model fusion

To resolve the difficulty in accurate anatomical image segmentation, information
theoretic regularization using the mutual information or joint entropy to
measure image similarity of image intensities are studied in [Nuyts, 2007,
Tang and Rahmim, 2009, Panagiotou et al., 2009, Somayajula et al., 2011]. MRI is
used as the information theoretic anatomical prior for the reconstruction of PET
in [Somayajula et al., 2011] and DOT in [Panagiotou et al., 2009]. It is found that
the joint entropy is more robust than the mutual information to differences between
the image under reconstruction and the anatomical image provided, especially
when the anatomical image has structures that are not present in the image

¶ To be precise, it is the x-ray tomosynthesis, a tomographic technique of limited views, that is used
in [Fang et al., 2010,Boas, 2014,Deng et al., 2015], instead of the conventional XCT with full-scanned
completed data.
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under reconstruction [Nuyts, 2007, Tang and Rahmim, 2009, Panagiotou et al., 2009,
Somayajula et al., 2011].

However, because both information theoretic metrics are based on global
distributions of the image intensities, mutual information or joint entropy between
images is not directly affected by local spatial structure of the images. “A
random spatial reordering of corresponding pairs of voxels in the two images would

produce identical measures” [Somayajula et al., 2011]. Therefore, It is necessary
to incorporate features that capture the local variation in image intensities. In
[Somayajula et al., 2011], scale-space features, such as a Gaussian-blurred image
and its Laplacian, are added into the similarity measure to help the joint entropy
reconstruction. This method is related to the following derivative-based approach.

Another disadvantage of information theoretic regularization is that it is
prone to different image contrast ranges from different modalities and may lead
to undesired reconstruction results [Panagiotou et al., 2009, Somayajula et al., 2011,
Weizman et al., 2016].

2.3. Derivative-based model joint reconstruction

As mentioned in the introduction, unlike model fusion, the structural information
in a JmmIR process is not from an image already reconstructed, but is updated
progressively during the joint reconstruction process. Most of the model fusion
methods in § 2.1 and § 2.2 have not been adopted to JmmIR, because of challenges
in progressively computing image segmentations and quantifying similarity of image
structural features of different contrast ranges from different modalities.

Another image representation, the gradient of an image serves as a
convenient image edge detector and is independent of image contrast ranges
[Marr and Hildreth, 1980, Canny, 1986, Perona and Malik, 1990]. The gradient and
higher order derivatives such as Laplacian of an image provide alternative structural
representations to resolve the aforementioned issues. They are easy to be updated
progressively. With derivatives as the image structural representation, the problem is
how to define the similarity measure of image structures.

This approach was first applied in geophysical imaging from multiple physical
process [Haber and Oldenburg, 1997]. In [Haber and Oldenburg, 1997], the L2-norm
of second order derivatives of image differences is used as the similarity measure
for the joint inversion of gravity and seismic tomography data. A generalized
cross-gradient procedure is developed for joint multiple parameter inversion in
[Gallardo, 2007,Gallardo and Meju, 2011], where cross-products of imaging gradients
are utilized to measure the parallelism of gradients, a.k.a., the structural similarity of
physical parameters.

The total variation is one of the most widely used regularizations in image
reconstruction problems [Rudin et al., 1992]. For JmmIR, the joint total variation by
summing up the total variations of images is used to solve the joint inversion problem
in [Haber and Gazit, 2013]. However, such a joint total variation encourages the joint
sparsity but not the similarity of image gradients. In [Rigie and La Riviere, 2015],
the total nuclear variation (TNV) is proposed for encouraging common edge locations
and alignment of their gradient vectors, and is applied to the multi-spectral CT
reconstruction. In [Knoll et al., 2017], the second order total generalized variation
(TGV) with nuclear-norm is applied for the joint image reconstruction of MRI and
PET. It is found that the TGV nuclear norm is robust regarding unwanted transfer
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of individual features to other channels [Knoll et al., 2017].
In [Ehrhardt et al., 2015], for the JbmIR of PET (u1) and MRI (u2), another

image similarity measure for image gradients is proposed to measure the parallelism
of image gradients as follows, called parallel level sets (PLS),

PLSβ(u1, u2) =

∫

Ω

ϕ
[

ψ (‖∇u1‖β · ‖∇u2‖β)− ψ
(

|〈∇u1,∇u2〉|β2

)]

(1)

where Ω ⊂ R
N is a domain that contains the object to be imaged, for N = 2 or 3,

‖z‖β = (‖z‖2 + β2)
1

2 for some β > 0 for the differentiability of PLSβ, 〈·, ·〉 is the
Euclidean inner product, φ and ψ are strictly increasing functions. Please note that
this image similarity measure is symmetric in u1 and u2. Please note that asymmetric
PLS can be formulated along the same framework [Ehrhardt, 2015].

However, the above derivative-based methods depend on the magnitude of
gradients. For JmmIR, images tend to have different ranges of contrasts and
different heights and signs of edges detected with derivatives [Rasch et al., 2017].
Normalized PLS can be formulated to resolve this issue within the framework
in [Ehrhardt, 2015]. Another approach to resolve this issue is using the infimal
convolution of generalized Bregman distances to formulate weighted similarity measure
for image gradients without the edge orientation constraint [Rasch et al., 2017], where
asymmetric weightings are also possible. This approach has also the advantage for
joint reconstruction to avoid the artificial transfer of non-shared structures between
the images [Rasch et al., 2017].

2.4. Summary

All work reviewed above are valuable contributions because they demonstrate the
performance and advantages of JbmIR over SmIR in a number of multi-modal imaging
applications. All the methods in this subsection use image gradients or derivatives as
the image structural representation. Similarity measures are proposed to measure
the parallelism or correlation of image gradients or derivatives, respectively. In spite
of their demonstrated success, none of them is working directly on image edge. For
image reconstruction, feature reconstruction [Louis, 2011] provides the possibility for
directly addressing structural information on features like image edges, but has not
yet been used for joint multi-modal image reconstruction. It is our motivation to
develop an approach directly with image edge together with an appropriate similarity
measure, which is expect to be more robust to data noise than the derivative-based
methods.

As discussed in [Haber and Gazit, 2013], the challenges in JmmIR are as follows.
The first fundamental challenge is because of the difference of contrast ranges or
different scales of different imaging modalities [Rasch et al., 2017], or different physical
meaning (and units) [Haber and Gazit, 2013]. Because structural similarity is the only
clue for JmmIR, the second one is an appropriate representation of image structural
information, which should support to capture the local variation in image intensities,
be independent of image contrasts, and be updated progressively during the joint
reconstruction process. Consequently the third one is an appropriate similarity
measure for the representation of image structural information. There could be
features in one modality but nonexistent in another. Hence, an appropriate similarity
measure should encourage the reconstruction of features only if there is sufficient
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evidence from measured data support but should not force the nonexistent features
to be reconstructed in another.

In this work, image edge is used as the structural representation of images, which
is the line-process in the Gibbs distribution of [Geman and Geman, 1984], and edge
set in the Mumford-Shah functional [Mumford and Shah, 1989]. This representation
meets the criteria of the second challenge aforementioned. A similarity measure for
image edge sets is derived from the feature contrast model of similarity in psychology
by Tversky [Tversky, 1977], which is appropriate in the sense of the third challenge
aforementioned.

3. Similarity measures for image edges

Many similarity measures explain similarity (or dissimilarity) as a distance d(·, ·) in
a metric space X of perceptual stimulus of objects, with d satisfying the following
metric axioms [Tversky, 1977],

(i) Minimality: d(K1,K2) ≥ d(K1,K1) = 0.

(ii) Symmetry: d(K1,K2) = d(K2,K1).

(iii) Triangle inequality: d(K1,K2) + d(K2,K3) ≥ d(K1,K3),

where K1, K2 and K3 ∈ X . This is called the geometric model of
similarity [Blough, 2001, Rorissa, 2007]. However, all three metric axioms are
unnecessarily stringent and can be inconsistent with a number of psychological
experiments [Tversky, 1977, Mumford, 1991, Rorissa, 2007, Skopal and Bustos, 2011,
Biasotti et al., 2016]. It is realized that “Similarity isn’t a metric anyway” in
[Mumford, 1991] after knowing the work of [Tversky, 1977].

In his prominent paper [Tversky, 1977], Tversky proposed his famous feature
contrast model for the similarity of binary features. Let ∆ = {a, b, c, · · · } be the
domain of objects under study. Assume that each object in ∆ is represented by a set
of binary features. Unlike the geometric model of similarity which represent stimulus
as points in a metric space, an object a is characterized by the set A of features that the
object a possesses. Features are binary in the sense that a given feature of an object
either is or is not in its set of features A. An example of the set of features is the
image edge set of an image. Tversky proposed another set of axioms about similarity
measures of binary features, which include the axioms of matching, independence,
solvability, invariance, and proved mathematically that feature similarity measures
must be of the following form [Tversky, 1977]+

S(a, b) = p(A ∩B)− γ1p(A \B)− γ2p(B \A), (2)

where A and B denote the sets of binary features associated with the objects a
and b, respectively, γ1 and γ2 are nonnegative constants. p is an additive function
such that p(A ∩ B) = p(A) + p(B) whenever A ∩ B = ∅. This representation is
called the feature contrast model and has been validated with multiple psychological
experimental data sets [Tversky, 1977,Tversky and Gati, 1982] and applied in image

+ Interested readers are referred the paper [Tversky, 1977] for details. Although the axioms
in [Tversky, 1977] are translated in some papers, we found that the original presentation in
[Tversky, 1977] is still the best. Please note that some translations are incomplete due to the
complicated formulations of axioms, especially for the axioms of solvability and invariance. It is
for the same reason that we give up the translation of Tversky’s axioms in this paper.
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processing applications [Santini and Jain, 1997,Santini and Jain, 1999,Rorissa, 2007].
Please note that the convention here is that the more similar A to B, the bigger
the similarity measure S(A,B). This formula (2) implies that a reasonable feature
similarity measure is a linear combination of the measures of their common and their
distinct features.

Similarity measures thus obtained increase with addition of common features
and/or deletion of distinctive features (i.e., features that belong to one object but not
to the other) [Tversky, 1977]. They posit that two stimuli are more similar if they have
more common features and fewer unique/distinctive features [Rorissa, 2007]. Hence,
similarity measures will not force the nonexistent features to be reconstructed when
applied to JmmIR as discussed in § 2.4. Actually, this point is postulated as the
matching axiom in [Tversky, 1977]. Psychologically, this explains why subjects tend
to pay more attention to common features than distinctive features in their similarity
judgments [Tversky, 1977].

The similarity in (2) is asymmetric when γ1 6= γ2. It should address that
asymmetric similarity measures are in general necessary for JmmIR. Because of
different image contrasts among modalities, similarity measures should be asymmetric
at least from a heuristic perspective. Some of the approaches in § 2 provide
asymmetric similarity measures with demonstrated advantages. At this point, It is
necessary to address one distinct approach for the model fusion of PET from MRI
in [Bowsher et al., 2004], which has not been reviewed in § 2. It is a segmentation-free
method with a smoothing Markov prior with weights determined by the MRI image
intensities at nearby voxels. It can be used in an asymmetrical way by using only
partial derivatives in certain directions [Bowsher et al., 2004, Schramm et al., 2018].
It is reported in [Schramm et al., 2018] that the PLS is slightly inferior compared to
the asymmetrical Bowsher method.

For 2D images, a natural choice for the measure p of image edge sets is the 1-
dimensional Hausdorff measure H, or the length of image edges. Therefore, we obtain,

S(u1, u2) = H(K1 ∩K2)− γ1H(K1 \K2)− γ2H(K2 \K1), (3)

where K1 and K2 denote the image edge sets of images u1 and u2, respectively.
This similarity measure of image edges is closely related to the Mumford-Shah
regularization functional [Mumford and Shah, 1989]. Higher-dimensional Hausdorff
measures can also be used in (3) for higher-dimensional images [Jiang et al., 2014].

4. JbmIR based on image edges

In this section, we apply the similarity measure for image edges of the previous section
to JbmIR and establish a general approach for JbmIR based on image edges. Without
loss of generality, we restrict to the bi-modal case and 2D case in this paper to avoid
notational complexity, although the mathematical formulation can be extended to
general multi-modal case.

For multi-modality imaging systems, the image reconstruction problem is to
estimate images ui from measurement data gi, for i = 1, 2,

Ai(ui) = gi, (4)

where Ai is the forward operator of underlying imaging modality. The
Mumford-Shah functional was first proposed as a variational approach for
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image denoising and segmentation from the Markov random field theory
[Geman and Geman, 1984]. It provides an approach for incorporating edges for
the regularization of image reconstruction problems. Recently the Mumford-
Shah functional has been successfully applied as a regularization method for
image reconstruction problems (4) [Rondi and Santosa, 2001,Ramlau and Ring, 2007,
Rondi, 2008, Klann et al., 2011, Jiang et al., 2014]. The SmIR for (4) with the
Mumford-Shah regularization is as follows,

MS(ui,Ki) =

∫

Θi

|Ai(ui)− gi|
2 + αi

∫

Ω\K

|∇ui|
2 + βiH(Ki), (5)

where Θi is the domain of the measurement, Ki is the edge set of the image ui, αi

and βi are positive regularization parameters, for i = 1, 2.
The JbmIR based on image edges is to use the similarity measure in (3) to

formulate the following joint reconstruction functional

E(u1, u2,K1,K2) = MS(u1,K1) +MS(u2,K2)− τS(u1, u2), (6)

where τ > 0 is a regularization parameter. Please note that the minus sign “−” is to
ensure the similarity of edge sets of images u1 and u2 during the joint reconstruction
process because of the convention that the more similar edges, the bigger their
similarity. Let

Φi(ui,Ki) =

∫

Θi

|Ai(ui)− gi|
2 + αi

∫

Ω\Ki

|∇ui|
2. (7)

Then we find,

E(u1, u2,K1,K2)

= Φ1(u1,K1) + Φ2(u2,K2) + β1H(K1) + β2H(K2)

− τH(K1 ∩K2) + τγ1H(K1 \K2) + τγ2H(K2 \K1). (8)

In the above equation, the terms involving only the edges K1 and K2 sum up to

β1H(K1) + β2H(K2)− τH(K1 ∩K2) + τγ1H(K1 \K2) + τγ2H(K2 \K1) (9)

=β1H(K1 ∩K2) + β1H(K1 \K2) + β2H(K2 ∩K1) + β2H(K2 \K1) (10)

− τH(K1 ∩K2) + τγ1H(K1 \K2) + τγ2H(K2 \K1) (11)

=(β1 + β2 − τ)H(K1 ∩K2) + (β1 + τγ1)H(K1 \K2) + (β2 + τγ2)H(K2 \K1). (12)

By re-parametrization with the reuse of the same notations for the regularization
parameters β1, β2, γ1, and γ2 to avoid notational complexity, this sum can be written
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as the following, ∗

Ψ(K1,K2)

= β1 [H(K1 ∩K2) + γ1H(K1 \K2)] + β2 [H(K1 ∩K2) + γ2H(K2 \K1)] . (16)

In summary, the joint reconstruction functional can be written as

E(u1, u2,K1,K2)

=

2
∑

i=1,j 6=i

∫

Θi

|Ai(ui)− gi|
2 + αi

∫

Ω\Ki

|∇ui|
2 + βi [H(Ki ∩Kj) + γiH(Ki \Kj)] ,

(17)

where αi, βi and γi (i = 1, 2) are positive regularization parameters.

5. Variational approximation for JbmIR

In [Page, 2015], an extended Mumford-Shah functional with a priori edge information
was established for image reconstruction from the perspective of regularization theory.
For an image reconstruction problem A(u) = g with similar notations as in (4) and (5) ,
if partial information of image edge can be obtained, then the following reconstruction
functional is proposed in [Page, 2015],

MSK0(u,K)

=

∫

Θ

|A(u)− g|2 + α

∫

Ω\K

|∇u|2 + β
[

H(K \K0) + γH(K ∩K0)
]

, (18)

where K0 is the partial information of image edge. Theoretical results and numerical
experiments were reported in [Page, 2015]. The advantages of the extended Mumford-
Shah functional were demonstrated by numerical experiments with the model fusion
of DOT from XCT.

By ignoring the accurate values of parameters, we have the joint reconstruction
functional in (17)

E(u1, u2,K1,K2) = MSK2
(u1,K1) +MSK1

(u2,K2). (19)

However, because none of K1 and K2 is fixed, it is difficult to extend the theoretical
results in [Page, 2015] on existence, regularization property, Γ-approximation to the
joint reconstruction functional. JbmIR based on image edge as formulated in (17)
is to find the minimizer pair (u1, u2,K1,K2) given the measurement g1 and g2 and

∗ Let β′

1
, β′

2
, γ′

1
, and γ′

2
be positive parameters such that

β1 + β2 − τ = β′

1 + β′

2, (13)

β1 + τγ1 = β′

1γ
′

1, (14)

β2 + τγ2 = β′

2γ2.
′ (15)

Here we assume that β1+β2 > τ . This is a reasonable assumption because all the edge regularizations
in (12) reduce to the Mumford-Shah regularization on image edge with the regularization parameter
β1 + β2 − τ , in the ideal case when the image edge sets of u1 and u2 perfectly match, i.e., K1 = K2.
The equation (16) holds with β1, β2, γ1, and γ2 being replaced by β′

1
, β′

2
, γ′

1
, and γ′

2
, respectively.
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appropriate choice of the regularization parameters. As its native form for SmIR
as in (5), the joint reconstruction functional is not easy to minimize numerically
because of the difficulty of tractable edge representation in implementation. Γ-
approximation is an approach to find a variational approximation for minimizing
the the joint reconstruction functional. We are to propose an approximation for
the joint reconstruction functional and demonstrate its performance with numerical
experiments in this work, based on previous work in [Page, 2015].

In [Page, 2015], the following Γ-approximation to MSK0(u,K) in (18) is proposed,

MSK0(u, v)

=

∫

Θi

|A(u)− g|2 + α

∫

Ω

v2|∇u|2 + β

[
∫

Ω

(

ε|∇v|2 +
(1− v)2

4ε

)

(1 + γ(v0 − v)2)

]

,

(20)

where 0 ≤ v ≤ 1 and 0 ≤ v0 ≤ 1 are the edge indicator functions for the edge sets
K and K0, respectively, i.e., v(x) = 1 if x /∈ K and v(x) = 0 if x ∈ K, with the
same definition for v0 and K0. ε controls the “width” of edges. The Γ-convergence of
MSK0(u, v) is only proved for γ = 0 in [Page, 2015]. Although the Γ-approximation in
(20) is proposed from an heuristic perspective, its performance is demonstrated with
numerical experiments in [Page, 2015]. Based on the relation in (19), we propose the
following Γ-approximation to the joint reconstruction functional E in (17) as follows,

F (u1, v1, u2, v2)

=
2

∑

i=1,j 6=i

∫

Θi

|Ai(ui)−gi|
2+αi

∫

Ω

v2i |∇ui|
2+βi

[
∫

Ω

(

εi|∇vi|
2 +

(1− vi)
2

4εi

)

(1 + γi(vj − vi)
2)

]

,

(21)

where 0 ≤ v1 ≤ 1 and 0 ≤ v2 ≤ 1 are the edge indicator functions for the edge
sets K1 and K2, respectively. εi controls the “width” of edges. As ε1 → 0+
and ε2 → 0+, the proposed Γ-approximation (21) is expected to Γ-converge to
the functional in (16), and the edge indicator functions v1 and v2 are expected to
converge to the characteristic functions of the edge sets K1 and K2, respectively, in
the sense of L2. The current formulation of the Γ-approximation (21) is based on the
heuristics in [Page, 2015, § 4.5]. We are unable to prove the expected convergence
mathematically, although a proof for γ1 = γ2 = 0 might be possible by using the same
method in [Page, 2015] where a lengthy proof for single modal image reconstruction
with the extended Mumford-Shah function with a priori edge information is provided
for γ = 0. In this work we concentrate in studying numerically how the proposed
method can help to improve the quality of reconstructed images.

6. JbmIR of XCT and DOT

In this section we give a brief introduction of XCT and DOT, and apply the JbmIR
reconstruction method in the previous section to the JbmIR of XCT and DOT.

6.1. X-ray computed tomography

In conventional X-ray tomography, the image contrast is due to the x-ray absorption
when X-ray beams pass through an object. The interaction of X-ray and the object
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could be a complex process. Nevertheless, the beam path in straight lines provides a
good approximation for X-ray tomography in many cases. The absorption process is
described by Beer’s law. Please refer to [Natterer, 2001,Louis, 1989] for more details.

Let I(x) be the intensity of an X-ray and f(x) the X-ray attenuation coefficient
at position x. Then along a straight line L,

dI

dl
= −fdl, (22)

where dl is the differential element along L. Let I0 be the initial intensity of the X-ray
and I1 the intensity after passing through the object. As we assume that the beam
travels in the straight line L, from (22) it follows

ln
I1
I0

= −

∫

L

fdl. (23)

The measurement I1 and the initial intensity I0 provide line integrals of the X-ray
attenuation coefficient f along lines, if the measurement is conducted in multiple
directions and positions. The operator that maps a function into the set of its line
integrals is the Radon Transform, which is defined as the following in the case of 2D
XCT,

R(f)(θ, s) =

∫

L

fdl, (24)

for every line L crossing the domain Ω ⊂ R
2 containing underlying objects, where θ =

(cosϕ, sinϕ) is the normal direction of the line L = {(x, y) ∈ R
2 : x cosϕ+y sinϕ = s}

and s ∈ R. Let Θ1 = S1×R (where S1 is the unit circle), and u1 = f , and g1 = ln I1
I0
.

Then the XCT is to estimate the image u1 from its measurement data g1,

R(u1) = g1. (25)

6.2. Diffuse optical tomography

The steady-state diffuse optical tomography (DOT) is a functional imaging modality
which uses near infrared light to illuminate biological tissue and reconstruct the
inside distribution of optical properties using the light intensity measured on the
surface of the tissue. Light at near-infrared wavelength will be absorbed and
scattered while passing through biological tissue. The optical properties have direct
biological relevance since the absorption of light is due to the existence of oxy-/deoxy-
haemoglobin. Please refer to [Arridge, 1999, Arridge and Schotland, 2009] for more
details.

The governing equation used for diffuse light u in DOT is the diffuse
approximation of the radiative transport equation (RTE),

− div(D∇u) + µau = 0, in Ω (26)

where D is the diffusion coefficient and µa is the absorption coefficient. The incoming
light q can be modeled by Robin boundary condition in the diffuse approximation,

u+ 2D−→n · ∇u = q, on ∂Ω (27)

where −→n is the outer normal on the boundary ∂Ω of Ω. The measurement g2 is the
negative Neumann boundary values of the solution of equation (26)

g2 = −D−→n · ∇u, on ∂Ω. (28)
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In practice, extra coupling coefficients due to refraction should be introduced into
the equations (27) and (28) [Arridge, 1999,Arridge and Schotland, 2009]. Given the
incoming light q, diffusion coefficient D and absorption coefficient µa, the forward
operator F in DOT maps (µa, D) to the measurement data g2 in (28). The DOT is
to estimate (µa, D) from the measurement data g2,

F(µa, D) = g2. (29)

In this work we consider a special case of DOT to demonstrate the performance of
the proposed JbmIR method. We are interested in recovering the absorption coefficient
µa, and assume the diffusion coefficient D to be known in the following. This is an
interesting but non-linear and ill-posed inverse problem [Arridge and Schotland, 2009].
For a known diffusion coefficient D, we introduce the new forward operator G as

G(µa) = F(µa, D) (30)

To use the same notations in the previous sections, we write u2 to represent the
absorption image µa, and g2 for the measurement G(µa). Then the DOT with know
diffuse coefficient is to estimate u2 from the measurement data g2 ,

G(u2) = g2, (31)

where the measurement is on the boundary Θ2 = ∂Ω of Ω.

6.3. JbmIR of XCT and DOT

With the development of hybrid multi-modal imaging techniques, there are a number
of hybrid optical tomography systems reported in the literature together with
reconstruction methods by model fusion from XCT or JbmIR with XCT, such as
DOT/XCT [Yuan et al., 2010, Boas, 2014, Deng et al., 2015, Baikejiang et al., 2017],
BLT/DOT/XCT [Yang et al., 2015]. To reduce the radiation dose and accelerate the
data acquisition, it is the x-ray tomosynthesis technique of limited views that is used
in the latter work [Baikejiang et al., 2017, Boas, 2014, Deng et al., 2015] rather than
the conventional full-scan XCT.

By applying the general JbmIR formulation in (21), we obtain the following joint
reconstruction function for XCT and DOT,

F (u1, v1, u2, v2)

=

∫

Θ1

|R(u1)−g1|
2+αi

∫

Ω

v21 |∇u1|
2+β1

[
∫

Ω

(

ε1|∇v1|
2 +

(1− v1)
2

4ε1

)

(1 + γ1(v2 − v1)
2)

]

+

∫

Θ2

|G(u2)−g2|
2+α2

∫

Ω

v22 |∇u2|
2+β2

[
∫

Ω

(

ε2|∇v2|
2 +

(1− v2)
2

4ε2

)

(1 + γ2(v1 − v2)
2)

]

,

(32)

where 0 ≤ v1 ≤ 1 and 0 ≤ v2 ≤ 1 are the edge indicator functions for the edge sets
of XCT image u1 and DOT image u2, respectively. Please note that there are no
weighting parameters in front of the two fidelity terms, but this does not mean both
fidelity terms contribute equally to the joint reconstruction. Because of the alternating
minimization algorithm discussed in the following, they never meet each other and
their contributions are independent of each other. The difference of their contribution
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are weighted by the regularization parameters β1, β2, γ1 and γ2. During the training
of the regularization parameters, the two fidelity terms also play roles independent of
each other. The difference of their contribution, even if there are different weights for
both, will merged into the regularization parameters.

The JbmIR of XCT and DOT in this work is to reconstruct the images u1 and u2
as well as the edge indicators v1 and v2 simultaneously in an iterative process. This is
achieved by minimizing the objective functional (32) with an alternating minimization
algorithm in the order of u1, v1, u2 and v2. Each minimization for u1, v1, u2 and v2
is a gradient descending with the backtracking line search method by the Armijo-
Goldstein stopping condition [Armijo, 1966,Wikipedia contributors, 2017], with the
previous reconstruction as initial value and the others being frozen at the latest
reconstructed values. Hence, the proposed alternating minimization algorithm for
the JbmIR of XCT and DOT is an instance of stochastic gradient descending with the
aforementioned order, and is described in Algorithm 1. Notice that we use argmin
in the algorithm description to indicate our minimizing purpose and in each step we
use gradient descent method, therefore the results we get from the iteration are the
approximations of minimizers.

Algorithm 1 Alternating minimization for JbmIR of XCT and DOT

for i = 0, 1, 2, . . . , n do

ui+1
1 =argmin

u1

F (u1, v
i
1, u

i
2, v

i
2) (33)

with ui1 as the initial value;

vi+1
1 =argmin

v1
F (ui+1

1 , v1, u
i
2, v

i
2) (34)

with vi1 as the initial value;

ui+1
2 =argmin

u2

F (ui+1
1 , vi+1

1 , u2, v
i
2) (35)

with ui2 as the initial value;

vi+1
2 =argmin

v2
F (ui+1

1 , vi+1
1 , ui+1

2 , v2) (36)

with vi2 as the initial value;

end for

Although there are many terms in the joint reconstruction functional F in (32),
there is not so many computing terms at each minimization step in (33), (34) (35) and
(36) because some terms can be treated as constants. For example, at the minimization
step (33), only the first two terms at the first line on the right-hand side of (32) are
involved in this minimization step, those terms not involving u1 can be treated as
constants and ignored. Especially the time consuming computation of the forward
process G for the DOT is not needed. We have carefully analyzed the dependent
terms at each minimization step to reduce the computing load. Implementation and
experimental details are reported in the next section.
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7. Numerical experiments

In discrete case, the gradients are discretized with forward difference and the
divergence with backward difference, so that the discretized gradient corresponds to
the gradient of the discretized functional.

For XCT, the initial image value is set as zero and the initial edge value is set
as one. For DOT, zero and one initials cannot lead to good reconstruction results.
We use gradient descent method for only the fidelity term to get a blurry image as
the initial image value, and use the Mumford-Shah functional segmenting this initial
image to get the initial edge value. The SmIR-MS and JbmIR-MS both use this same
initial value setting.

We also need to set up the stopping criterion of our algorithm. This is achieved by
setting up the iteration numbers involved. After a number of numerical experiments
with phantoms of similar structures as in this work, we find that after 80 whole
iterations with 10 steps for each variables in every iteration the SSIM values, which
we use to evaluate the quality of the reconstructed images, of both XCT and DOT
stabilize at relatively higher values, and in our examples over 0.85 for XCT and over
0.69 for DOT.

We evaluate the quality of the reconstructed image urec via the structural
similarity index measure (SSIM) [Wang et al., 2004] using the corresponding true
image utrue as a reference image:

SSIM(urec, utrue) =
(2utrueurec + C1)(2σutrueurec

+ C2)

(u2true + u2rec + C1)(σ2
utrue

+ σ2
urec

+ C2)
(37)

where utrue, urec are averages, σ2
utrue

, σ2
urec

are variances and σutrueurec
is the

covariance.
SSIM value is proposed to measure the similarity between two images considering

three comparison measurements: luminance, contrast and structure. We use the
default parameter settings that C1 = (0.01L)2, C2 = (0.03L)2, where L is the dynamic
range of the ground truth. The higher SSIM value is the more similar the two images
are. SSIM=1 only happens for identical images.

7.1. Experimental setting

The computations are done using Matlab. For XCT, the Radon Transformation and
the adjoint operator written by Lut Justen from the Software-Documentation of the
Center for Industrial Mathematics, University of Bremen are implemented. For DOT,
the TOAST++ package [Schweiger and Arridge, 2014] from Martin Schweiger and
Simon Arridge is implemented for the forward operator and the Jacobian matrix of
the forward operator.

For XCT, the projection data are obtained from 30 views uniformly distributed in
[0, 180o]. Because our phantoms are of radius 25 mm and image sizes are of 100× 100
pixels, the package we use for XCT automatically assigns each view 100 uniformly
distributed parallel X-ray beams with a step-length of 0.5 mm. For DOT, the data
are obtained with 16 source positions and 16 detector positions. TOAST++ uses
finite element method to solve DOT problem. The mesh and the positions of source
and detector are shown in Figure 1.

We add additional Gaussian noise n to our noise free data d. Since the fidelity
term

∫

Θi

|Ai(ui)− gi|2 shows that Ai(ui) should be a good approximation of the data
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gi in L2 norm, we scale the noise n to the data with regard to the L2 norm. The

relative noise level is defined as η = ‖n‖
‖d‖ , where ‖ · ‖ is the Euclidean norm. In our

numerical experiments 5% relative Gaussian noise is added to the XCT data and 2%
relative Gaussian noise is added to the DOT data.
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Figure 1: Finite element mesh for DOT problem with 16 source positions (red points)
and 16 detector positions (blue points).

7.2. Parameter choosing

The choice of the regularization parameters is non-trivial and should be done task-
dependently [Schramm et al., 2018].

In our proposed JbmIR-MS method, the “width” control parameters ε1 and ε2 are
set as 1× 10−4, which are the same as in [Page, 2015]. There are three regularization
parameters αi, βi and γi (i = 1, 2) needed to be chosen properly for each modality. αi

is the regularization parameter of the smoothing penalty term. The larger it is, the
smoother the reconstructed image will be when there is not any edge. βi weights how
strongly the edge penalizes. The larger it is, the fewer edges will be reconstructed. γi
controls the effect of the reference edge information. The effect of the reference edge
information increases as the value of γi increases.

For JbmIR-MS, from the XCT with a priori edge information numerical
experiments done by Thomas we can get that when the order of magnitude of α1

is around 104, the order of magnitude of β1 is around 10−3 or 10−4 and γ1 is no
more than 10 we could be able to get XCT results with clear structures. We first
fix the XCT parameters as α1 = 9 × 103, β1 = 2 × 10−3, γ1 = 10 to choose DOT
parameters. For joint DOT reconstruction we first roughly partition the parameter
space and compute the SSIM value to find rough-optimal parameters. Then according
to the reconstruction results and the parameter effect discussed above, we fine-tune
the parameters around this rough-optimal choice. For example, if the reconstructed
image is too smooth in non-edge area, we will decrease the value of α2. If there
are too few edges, we will slightly decrease the value of β2. If the influence of the
reference edge information is too strong that we reconstruct wrong structures that
should only appear in one modality and not in the other, we will slightly decrease the
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value of γ2. Here α2 is chosen from A2 = [0.01, 0.1, . . . , 1 × 109], β2 is chosen from
B2 = [1×10−9, 1×10−8, . . . , 0.1, 1], and γ2 is chosen from C2 = [1, 2, . . . , 9, 10]. Theses
parameter ranges are chosen from our experience with a number of phantoms of similar
structures. For our numerical experiments, we find that α2 = 1 × 105, β2 = 1× 10−5

and γ2 = 5 produce a higher SSIM value of the reconstructed DOT image against
its true image, among all possible combinations from A × B × C. Then we fine-tune
this rough-optimal choice according to the discussion above and reach the parameter
settings we use in our numerical experiments. After choosing the DOT parameters, we
then fine-tune the joint XCT parameters around α1 = 9×103, β1 = 2×10−3, γ1 = 10.
The final parameter settings for every experiment are listed in the description of the
numerical results.

We compare our method with SmIR using Mumford-Shah functional(SmIR-MS).
For SmIR-MS, the “width” control parameter ε is also set as 1× 10−4. There are

two regularization parameters α and β for each modality. The reconstruction result is
sensitive to both of them. The larger α is the smoother the reconstructed image will
be when there is not any edge. The larger β is the fewer edges will be reconstructed.
We first perform a search of the parameter space in a rough scale with the SSIM
as the criterion. For both single modality reconstructions α and β are chosen from
A = [0.01, 0.1, . . . , 1 × 109] and B = [1 × 10−9, 1 × 10−8, . . . , 0.1, 1] to determine the
proper order of magnitudes first. For DOT reconstruction we find that α = 1×105 and
β = 1×10−7 produce a higher SSIM value of the reconstructed DOT image against its
true image, among all possible combinations from A×B. For XCT reconstruction the
parameters are α = 1× 104 and β = 1× 10−2. We then fine-tune this rough-optimal
choice according to the discussion above and our final parameter settings for every
experiment are listed in the description of the numerical results.

7.3. Phantom setting

We design three pairs of phantoms of size 100× 100. They are all circles with a radius
of 25 mm. Inside the circles, the structures are shown in Figure 2, Figure 3 and Figure
4. The X-ray attenuation coefficients u1 and the absorption coefficients u2 are listed
in Table 1, Table 2 and Table 3.
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Figure 2: Phantom 1. Left: the true distribution of the X-ray attenuation coefficient
u1. Right: the true distribution of the absorption coefficient u2.
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Table 1: Phantom 1

Background Three circles Top circle small circle

XCT u1 (mm−1) 1 2 — 2.5
DOT u2 (mm−1) 0.01 0.03 0.03 —
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Figure 3: Phantom 2. Left: the true distribution of the X-ray attenuation coefficient
u1. Right: the true distribution of the absorption coefficient u2.

Table 2: Phantom 2

Background Four circles small circle

XCT u1 (mm−1) 1 2 2.5
DOT u2 (mm−1) 0.01 0.03 —
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Figure 4: Phantom 3. Left: the true distribution of the X-ray attenuation coefficient
u1. Right: the true distribution of the absorption coefficient u2.

Table 3: Phantom 3

Background Two circle and one ellipse Top circle small circle

XCT u1 (mm−1) 1 2 — 2.5
DOT u2 (mm−1) 0.01 0.03 0.03 —
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7.4. Comparison with the SmIR

To compare the results, we put the reconstructed images of JbmIR-MS and SmIR-
MS together with the true distribution, and we adjust the display window all the
same as the ground truth, that is [0, 2.5] for XCT images and [0, 0.03] for DOT
images. Since Mumford-Shah functional provides edge information, we also compare
the reconstructed edge information using JbmIR-MS and SmIR-MS.

7.4.1. Example 1 For JbmIR-MS we choose α1 = 8.8× 103, β1 = 1.9× 10−3, γ1 =
9.8, α2 = 1 × 105, β2 = 6 × 10−5, γ2 = 5. For SmIR-MS XCT, we choose
α = 8.8×103, β = 8×10−3. For SmIR-MS DOT, we choose α = 1×105, β = 5×10−7.
Figure 5 shows the reconstruction results. The three images in the first row from left
to right are the true distribution of the X-ray attenuation coefficient u1, JbmIR-MS
u1 and SmIR-MS u1. The second row are the true distribution of the absorption
coefficient u2, JbmIR-MS u2, and SmIR-MS u2. According to the SSIM values,
the image quality of reconstructed u1 is improved using JbmIR-MS (SSIM from
0.79 to 0.87). The image quality of reconstructed u2 is improved using JbmIR-MS
(SSIM= 0.69) then SmIR-MS (SSIM= 0.61). We notice in the JbmIR-MS results
that both modalities maintain their own distinct structure (small circle in XCT and
top circle in DOT) and no false structure has been reconstructed because of the
information communication with the other modality.
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Figure 5: Phantom 1 reconstruction results. (top) The XCT phantom and
reconstruction results, (bottom) The DOT phantom and reconstruction results. For
SmIR-MS u1 we have SSIM= 0.79, and for the JbmIR-MS u1 we have SSIM= 0.87,
For SmIR-MS u2, we have SSIM= 0.61, for JbmIR-MS u2 we have SSIM= 0.69.

We also show the reconstructed edge images in Figure 6. The two images in the
first row are reconstructed edge images for X-ray attenuation u1 from bi-modality
and single-modality. The second row are reconstructed edge images for absorption
coefficient u2 from JbmIR-MS and SmIR-MS. We can find that JbmIR-MS provides
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clearer edge information than SmIR-MS especially for DOT result. And for JbmIR-
MS DOT reconstructed edges, from the difference of the top circle and the other three
circles we find that the edge is sharper where XCT image shares the same structure.

JbmIR-MS u
1
 edges SmIR-MS u

1
 edges

JbmIR-MS u
2
 edges SmIR-MS u

2
 edges

Figure 6: Reconstructed edge images.

7.4.2. Example 2 For JbmIR-MS we choose α1 = 8.8× 103, β1 = 1.9× 10−3, γ1 =
9.8, α2 = 1×105, β2 = 7×10−5, γ2 = 5. For SmIR-MS XCT, we set α = 8.8×103, β =
8 × 10−3. For SmIR-MS DOT, we set α = 1× 105, β = 5 × 10−7. The reconstructed
results are shown in Figure 7. The image quality of reconstructed u1 is improved using
JbmIR-MS (SSIM from 0.75 to 0.86). The image quality of reconstructed u2 is higher
using JbmIR-MS (SSIM= 0.70) then SmIR-MS (SSIM= 0.61). The improvement in
DOT image quality is greater than the first example because there are more similar
parts between phantoms of two modalities in this example.

The edge information is shown in Figure 8. We can see that the edge information
obtained from JbmIR-MS is clearer then SmIR-MS. Compare to the edge results in
Example 1, the edge of the top circle for DOT image is much more distinct because
the XCT phantom in this example can provide the edge information of the top circle.

7.4.3. Example 3 For JbmIR-MS we choose α1 = 8.8× 103, β1 = 1.9× 10−3, γ1 =
9.8, α2 = 1 × 105, β2 = 6 × 10−5, γ2 = 5. For SmIR-MS XCT, we choose
α = 8.8×103, β = 8×10−3. For SmIR-MS DOT, we choose α = 1×105, β = 5×10−7.
The reconstruction results are shown in Figure 9. According to the SSIM values, the
image quality of reconstructed u1 is improved using JbmIR-MS (SSIM from 0.76 to
0.87). The image quality of reconstructed u2 is higher using JbmIR-MS (SSIM= 0.69)
then SmIR-MS (SSIM= 0.60).

The edge information is illustrated in Figure 10. We can find that the middle
ellipse shape for DOT is more obvious in JbmIR-MS edge result than in SmIR-MS
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Figure 7: Phantom 2 reconstruction results. (top) The XCT phantom and
reconstruction results, (bottom) The DOT phantom and reconstruction results. For
SmIR-MS u1 we have SSIM= 0.75, and for JbmIR-MS u1 we have SSIM= 0.86, For
SmIR-MS u2 we have SSIM= 0.61, for JbmIR-MS u2 we have SSIM= 0.70.
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Figure 8: Reconstructed edge images
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Figure 9: Phantom 3 reconstruction results. (top) The XCT phantom and
reconstruction results, (bottom) The DOT phantom and reconstruction results. For
SmIR-MS u1 we have SSIM= 0.76, and for JbmIR-MS u1 we have SSIM= 0.87, For
SmIR-MS u2 we have SSIM= 0.60, for JbmIR-MS u2 we have SSIM= 0.69.

edge result.
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8. Discussion

In this work, we establish an image similarity measure in terms of image edges from
Tversky’s theory of feature similarity in psychology to solve the DOT and XCT joint
reconstruction problem. This similarity consists of Hausdorff measures of the common
and different parts of image edges from both modalities. When applied to JbmIR it will
improve the reconstructed image quality and will not force the nonexistent structures
to be reconstructed.

To implement the joint reconstruction, a Γ−approximation(21) is proposed for
the joint reconstruction functional. The current formulation of the Γ-approximation
is based on the heuristics in [Page, 2015, § 4.5]. We are unable to prove the expected
convergence mathematically, although a proof for γ1 = γ2 = 0 might be possible
by using the same method in [Page, 2015] where a lengthy proof for single modal
image reconstruction with the extended Mumford-Shah function with a priori edge
information is provided for γ = 0. However, it is too tedious to reproduce such a proof
in the current work and does not contribute any mathematical insight into this problem
with such a stringent condition in our opinion. Instead, we concentrate in studying
numerically how the proposed method can help improve the quality of reconstructed
images in this work. In the Γ-approximation functional there isn’t any weighting
parameters in front of the two fidelity terms, that is because they are independent
of each other. We reconstruct the two modalities alternatively, and the information
communication is achieved by edge similarity, so we just choose proper regularization
parameters for penalty term to control the effect of the other modality and do not
weight the fidelity term.

Since circle is the simplest shape, we first design phantoms with circle internal
structure. For each example, the structure of the two phantoms are designed similar
to each other. XCT should be able to reconstruct finer structure so we add a small
circle to the XCT phantoms. DOT cannot distinguish such fine structure so we only
design big circle inner structure. Considering that DOT can distinguish different soft
tissue better than XCT, we add one more big circle in DOT phantom for Example
1 and Example 3. A reasonable similarity measure should maintain the distinctive
structure in each modality and not force the nonexistent features in one modality to
be reconstructed. In Example 2, the main parts are set exactly the same as each other
to see if we can improve image quality more when the phantoms from two modalities
share more common structure. And in Example 3, we change the shape of the middle
structure to be an ellipse to see the performance of different methods for different
shape of the inner structure.

Our JbmIR-MS is compared with SmIR-MS. From results shown in Figure 5 for
Example 1, we can see that the quality of images reconstructed jointly is higher than
that of images reconstructed under the SmIR-MS. The SSIM values increase 10.30%
and 12.78% for DOT and XCT respectively. Looking at the reconstructed images,
JbmIR-MS u1 keeps the structure of the small circle and no extra top circle structure
is reconstructed because of the information provided by u2. As for JbmIR-MS u2 the
structure is more clear than SmIR-MS result especially the parts that are consistent
with u1. It is more obvious in the reconstructed edge information shown in Figure 6.

The results for Example 2 are shown in Figure 7. We can see that the image
quality improvement is greater than that in Example 1. The SSIM values increase
14.85% and 14.44% for DOT and XCT respectively. We think that the reason that
the enhancement in Example 2 is greater than that in Example 1 is because the
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phantoms of DOT and XCT modalities in Example 2 share more similar parts than
Example 1, thus using our edge similarity measure, each modality can provide more
a priori structural information. Compare to the edge results in Example 1, the edge
of the top circle for DOT image is much sharper because the XCT phantom in this
example can provide the edge information of the top circle.

In Example 3 we can see that for different shapes of the internal structure,
ellipse in our case, JbmIR-MS method also provides better reconstructed images,
shown in Figure 9. The SSIM values increase 13.82% and 15.91% for DOT and XCT
respectively. And from the result figure we can clearly see the shape of the middle
ellipse in our joint reconstruction result for DOT problem.

We find that the visual improvement of XCT reconstruction is not impressive,
because the phantoms are easy for XCT. However, looking at their line profiles, the
improvement is easy to capture as shown in Figures 11(a), 11(b) and 11(c). It can be
seen that the XCT results using JbmIR-MS are closer to the true distributions than
that using SmIR-MS.

From the numerical results we can see that minimizing the Mumford-Shah
functional enables us to reconstruct images and obtain edges at the same time.
Since the images from two modalities share similar structure, our JbmIR-MS method
adding the edge similarity measure to the Mumford-Shah functional implements
the information communication between DOT and XCT modalities which helps to
enhance the reconstructed image quality for both modalities. With proper choice
of regularization parameters, our similarity measure is able to help enhancing the
image quality of the common features, to remain distinctive features for each modality
and not force to reconstruct the nonexistent features. The smoothing term together
with the usage of separate edge variables to represent structure information enable us
to get piecewise smooth reconstructed images with clear and sharp edge with noise
data. However there are a number of parameters, including regularization parameters,
needed to be chosen carefully and the current parameter choosing is a trial-error
approach. For 3D situation, the DOT/XCT bi-modal imaging system has already
been set up. We are now preparing the optical phantoms [He et al., 2018] for real
physical experiment. And we are going to test the JbmIR-MS method with realistic
data acquired under our bi-modal imaging system.

9. Conclusion

In this paper, we have proposed an asymmetric edge similarity measure following
the feature contrast model in [Tversky, 1977] to solve the DOT and XCT joint
reconstruction problem. This edge similarity measure is able to implement
the information communication between the two modalities, thus improves the
reconstructed image quality for both modalities. Meanwhile, it remains distinctive
structure for each modality and does not force the nonexistent edges to be
reconstructed when some of the structures only exist in one modality.

Representing the edge sets by edge indicator functions, a Γ-approximation (21) is
proposed to make it easier to implement the joint reconstruction. To demonstrate the
performance of our JbmIR-MS algorithm, we have designed two dimensional numerical
phantoms and calculate the minimizers of the Γ-approximation. To calculate the
minimizers, we use gradient descent method with the negative gradient as the descent
direction and the step size chosen by backtracking line search with the Armijo-
Goldstein stopping condition.
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(b) XCT profiles for Phantom 2.
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(c) XCT profiles for Phantom 3.

Figure 11: XCT profiles for the three phantoms and reconstructed images. Black
vertical lines on images on the left-side show the positions of lines to draw the line
profiles on the right-side. For the line profiles, the blue line shows absorption values
of the truth image, red circles shows absorption values from the SmIR-MS of XCT,
and green stars shows absorption values from the JbmIR-MS of XCT. It can be seen
that the results from the JbmIR-MS are closer to the truth distributions than the
SmIR-MS.
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We have evaluated the reconstructed images using SSIM value with the
corresponding ground truth as reference image. We compared our JbmIR-MS method
with SmIR-MS which shows that joint reconstruction can provide better quality images
and clearer edge information.

The results in this work show the effectiveness of the reconstruction method using
Mumford-Shah functional with proposed edge similarity measure in 2D.
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