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ABSTRACT
Multi-modal data comprising imaging (MRI, fMRI, PET,
etc.) and non-imaging (clinical test, demographics, etc.) data
can be collected together and used for disease prediction.
Such diverse data gives complementary information about the
patient’s condition to make an informed diagnosis. A model
capable of leveraging the individuality of each multi-modal
data is required for better disease prediction. We propose a
graph convolution based deep model which takes into account
the distinctiveness of each element of the multi-modal data.
We incorporate a novel self-attention layer, which weights ev-
ery element of the demographic data by exploring its relation
to the underlying disease. We demonstrate the superiority of
our developed technique in terms of computational speed and
performance when compared to state-of-the-art methods. Our
method outperforms other methods with a significant margin.

Index Terms— Multi-modal, Graph Convolutions, Dis-
ease prediction

1. INTRODUCTION

Experts look at all the varied multi-modal data collected by
imaging sources and non-imaging demographics (age, gen-
der, weight, body-mass index) to take an informed decision
for disease diagnosis. Such rich data is also exploited in Com-
puter Aided Diagnosis systems (CADs) as complementary in-
formation. Current CAD systems combine all the comple-
mentary features by using feature selection [1], or by reducing
the dimensionality with an autoencoder [2, 3, 4]. Works are
also done with simply concatenating all the features to use
deep learning based models [5]. All the above methods ex-
ploit the complementary information from available modali-
ties at a global level but fail to optimally combine the varied
information. For instance, the learned features are biased to-
wards the single modality with dominant features and do not
exploit the individuality of each modality. On top of that,
each demographic information carries different relevance for
the diagnosis of a disease. A model is required which is capa-
ble of evaluating the significance of every element of the de-
mographic data and performing the prediction task based on

the selective and weighted procedure for elements of demo-
graphic data. Such a scheme will boost the disease prediction
task to incorporate more clinical semantics.

Graphs provide a more such a way of using multi-modal
data [6, 7]. These methods leverage the similarities between
subjects in terms of an affinity graph in the training process
itself. Most recent work [6] by presents an intelligent and
novel use case of Graph Convolutional Networks (GCN) for
the binary classification task. This allows convolutions to be
used on graph-structured data, where each patient represents
a node in the population level graph. The method proposes to
use each demographic information separately to construct a
neighborhood graph. They eventually combine all the neigh-
borhood graphs to get the average affinity graph, unlike the
conventional methods, which fuses the information for the
prediction task. This method, however, yields varied results
for distinct input neighborhood graphs. Each of these affinity
graphs and indirectly each element of the demographic data
carries distinct neighborhood relationships (based on element
dependent criteria) and statistical properties with respect to
the entire population.

Our motivation is to analyze the impact and relevance
of the neighborhood definitions on the final task of disease
prediction. In addition to that, we want to investigate whether
the relative weighting of meta-data can be automated. Con-
tributions: 1) We propose a model capable of incorporating
the information of each graph separately, 2) our design ar-
chitecture bears a parallel setting of Graph Convolutional
(GC) layers 3) we introduce a ’Self-Attention layer’ which
automatically learns the weighting for each meta-data with
respect to its relevance to the prediction task, and 4) Our
model outperforms the state-of-the-art method.

2. METHODOLOGY

Given a dataset D = {X,Y, δ} with X ∈ RN×d represent-
ing the feature matrix for N patients and each one is pro-
vided with d-dimensional features. Y represents the corre-
sponding label matrix and δ the demographic data matrix.
The task is to predict the class label Ŷ for test subjects for
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Fig. 1: Figure describes the Multi-Layered Parallel Graph Convolutional Network with M=2. Two branches have same input
features but input affinity matrix.

K classes. δ ∈ RN×M represents that for each patient M -
dimensional demographic data is provided. The mth affinity
graphs G(m) ∈ RN×N are computed from the respective δm

demographic element. The model f(·) to solve the task is
given by

Ŷ = f(X,G(m); θ). (1)

The model takes X and G(m) as input to train the parame-
ters θ and outputs discriminative features for classification.
Fig. 1 shows the entire methodology, which can be divided
into three main parts: (1) Affinity matrix Wm construction,
(2) the forward propagation model: we describe the model,
where architecture to produce class-separable features and
(3) the self-attention layer, for automatic weighting of the
graph-specific output features of each branch.
Affinity MatrixW (m) Construction: We constructM affin-
ity matrices corresponding to each of the demographic ele-
ment. For themth element, let the graphG(m) =

{
X,E(m)

}
be an undirected and unweighted, where all the M graphs
have a common vertex set X . E(m) ∈ RN×N is a de-
mographic element specific edge matrix. Each graph G(m)

reveals distinct intrinsic relationships between the vertices.
Edges between vertices are defined based on the given demo-
graphic element as

E
(m)
i,j =

{
1 if |δi,m − δj,m| < β

0 otherwise
, (2)

where δm(·) is the corresponding demographic element and β
is a threshold. We generate affinity matrix from these graphs
by weighting the edges. A similarity metric between the sub-
jects Sim(Xi, Xj), e.g. correlation coefficient, is incorpo-
rated to weight the edges as

W
(m)
i,j = Sim(Xi, Xj) ◦ E(m)

i,j (Xi, Xj) , (3)

where ◦ is the Hadamard product.
Forward propagation model: We design our model such

that it trains each affinity graph separately. The proposed
model bears the parallel setting of M branches as shown in
Fig. 1. Each branch is equipped with spectral graph theory
based GC layers. These layers help to adopt convolutions on
graphs unlike grid based convolutions [7, 8]. The proposed
forward propagation model is given by:

H
(m)
l+1 = σ

(
D(m)−

1
2W (m)D(m)−

1
2H

(m)
l Θ

(m)
l

)
(4)

D is the diagonal matrix with D
(m)
ii =

∑
j W

(m)
ij . Θ

(m)
l

are the trainable layer-specific filters, which can be derived
from a first-order approximation of localized spectral filters
on graphs [7], and H(m)

l is the feature representation of the

previous layer (H(m)
0 = X). D(m)−

1
2W (m)D(m)−

1
2 is the

normalized graph Laplacian, and σ(·) is the rectified linear
unit function. The model outputs Hlogits ∈ RN×K .

Self-Attention Layer: The logits for M branches differ
with respect to each other because of graphs although features
on each vertex are common. In order to rank the demographic
data elements, we design a linear combination layer that ranks
the logits coming from the last hidden layer as

Ŷ = Softmax

(
M∑

m=1

ωmH
(m)
logits

)
, (5)

where ωm is the trainable scalar weight associated with the
demographic element and Ŷ are the normalized log proba-
bilities. We define our objective function as binary weighted
cross entropy loss on the labeled data to train the model pa-
rameter.

3. EXPERIMENTS

Our experiments have been designed to (1) investigate the
influence of each affinity matrix on the performance of the



predictive models, (2) investigate the performance of the
predictive model with multi-graph setting approaches [6],
(3) we show comparison with 3 methods, linear classifier,
two-layered Dense Neural Network, baseline GCN method
[6], proposed model and (4) investigate in-depth insight of
self-attention layer with multi-graph setting.
Dataset: We show results on a publicly available dataset
namely Tadpole [9] for the prediction of Alzheimer's disease.
The dataset is a subset of ADNI[10] consisting of 564 pa-
tients. The goal is to classify each patient into one of the
three classes Normal, Mild Cognitive Impairment (MCI) and
Alzheimer's disease (AD). For each patient, the features are
collected from various biomarkers (MR, PET imaging, cog-
nitive tests, CSF biomarkers, etc). Further risk factors are
provided for each subject in terms of APOE genotyping sta-
tus and FDG PET imaging. Demographic elements (age and
gender) are also provided. Entire data is pre-processed with
ADNI’s standard data-processing pipeline.Implementation:
Number of features d = 354, dropout rate: 0.3, `2- regular-
isation: 5 × 10−4. All the experiments are implemented in
Tensorflow1 and performed with Nvidia GeForce GTX 1080
Ti 10 GB GPU. We use early stopping criteria to decide the
number of epochs for each setting. The model is evaluated
based on the classification mean accuracy (ACC) for 10-fold
Cross-Validation.

4. RESULTS AND DISCUSSION:

In this section, we discuss the results of all the experiments
in detail.
Influence of individual affinity matrix: For individual
affinities it should be noted from fig. 2 (a) that each graph
shows different results. This means that the input affinity
matrices have unequal relevance to the task at hand. For
example, the age graph shows the best performance and the
FDG graph shows the worst. The performance reduces when
all the graphs are averaged and used as input as in the base-
line method [6]. This proves that averaging affinity graphs
degrade the performance that could have been obtained oth-
erwise.
Performance with different combinations of graphs: We
perform another experiment by using all the different com-
binations of affinity matrices as input. This validates that
the performance varies if the combination of affinity matri-
ces is changed. According to [11] age and gender are the
most important factors compared to APOE and FDG for the
prediction of AD. The results are demonstrated in terms of
boxplots of accuracies as shown in fig.2 (c) which confirms
the different combination show different result.Moreover, the
combination of gender and age show the maximum perfor-
mance and most of the combinations using FDG and APOE
reduce the performance. This depicts that our model upholds
the clinical semantic same as [11]. This experiment also

1www.tesnsorflow.org

confirms that the overall performance reduces when all the
affinity graphs are weighted equally and averaging deterio-
rates the positive influence of other affinity matrices due to
the loss of neighborhood structure for individual graphs.Our
proposed model with self-attention outperforms all the com-
binations, since it captures the correct weighting required for
optimal performance.
Performance in comparison to other methods: We com-
pare the proposed method to three state-of-the-art methods
namely linear classifier, neural network and [6] as shown in
fig. 2 (b). We chose these methods respectively to investigate
1) how linearly separable the features at every node are? 2)
what is the performance of the model when features are con-
catenated? 3) what is the significance of incorporating the
graph for the task? and 4) how important is it to weight the
graphs? From fig. 2 (b), it can be seen that features are sep-
arable as the linear classifier performs quite well compared
to two other methods shown. For NN, where the features are
concatenated the model architecture becomes the problem.
We used the same number of hidden layers (2) and hidden
unties (16, 3 respectively) with the input of the feature dimen-
sion of 354. NN fails to perform well with this architecture.
As can be seen that the baseline [6] improves the performance
with respect to NN showing the strength of the GCN, how-
ever, it performs lower than linear and proposed. This is due
to the corrupted combination of the neighborhood. Finally,
our proposed method outperforms all the methods with the
correct weighted combination of neighborhood and Hlogits.
Effect of self attention: We also investigated the weights
learnt for each branch by our model. The self-attention layer
learned maximum weight for gender and age (0.35 and 0.27
respectively) and lower weight for FDG and APOE(0.09 and
0.29 respectively). It is confirmed from [11] that age and
gender are significant factor for predicting AD.

5. CONCLUSION

All our experiments go inline with our hypothesis that affinity
graphs influence the performance of disease prediction differ-
ently. GCNs are sensitive to the defined neighborhood. Com-
bination of affinities alters the possible neighborhood between
the subjects. Further, our proposed method with self-attention
clearly incorporates the unequal contributions of graphs and
outperforms all the setups with significant margin. The or-
der of complexity for our model versus the baseline model
[6] is nearly equal as O(n) ≈ O(2n), making it scalable for
a larger number of demographic elements. We train the GC
layers first for 150 epochs and then let the self-attention layer
train further. This helps channelize the learning of weights
of GC layers as well as self-attention layer. The features at
every node are kept simpler to gain more insights about effect
og graphs.

Further the choice of thresholds for creating the graphs
are followed from clinical statistics provided by the literature.
One might argue that splitting a single graph into multiple



(a) Influence of individual affinity with each show-
ing different mean accuracy matrix

(b) The results over all the comparative methods
with proposed model outperforming.

(c) Different combinations of all four affinity matrices showing differnt results

Fig. 2: All the three subfigures show the boxplots
of accuracy over 10-folds cross validation.

graphs will decrease the performance as some connections
are lost in the thresholding process. However aggregating the
graphs from different information source will lead to the loss
of individual structure and unequal relevance cannot be con-
sidered.
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