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ABSTRACT

Histopathology slides are routinely marked by pathologists
using permanent ink markers that should not be removed as
they form part of the medical record. Often tumour regions
are marked up for the purpose of highlighting features or other
downstream processing such an gene sequencing. Once digi-
tised there is no established method for removing this in-
formation from the whole slide images limiting its usabil-
ity in research and study. Removal of marker ink from these
high-resolution whole slide images is non-trivial and com-
plex problem as they contaminate different regions and in
an inconsistent manner. We propose an efficient pipeline us-
ing convolution neural networks that results in ink-free im-
ages without compromising information and image resolu-
tion. Our pipeline includes a sequential classical convolution
neural network for accurate classification of contaminated im-
age tiles, a fast region detector and a domain adaptive cy-
cle consistent adversarial generative model for restoration of
foreground pixels. Both quantitative and qualitative results
on four different whole slide images show that our approach
yields visually coherent ink-free whole slide images.

Index Terms— Digital histopathology, Marker ink re-
moval, Deep learning, CNN, GANs

1. INTRODUCTION

Histopathology slides are routinely marked by pathologists
using permanent ink makers before imaging that should not
usually be removed as these markings form part of the medi-
cal record. Once the slides are digitised, these markings con-
taminate the images. Such images are not advisable to be used
for research and educational purposes as these markings of-
ten contain information which could bias results of a study.
Slides are for example marked with “EPE” referring to extra-
prostatic extension could be a visual prompt for a pathologist.

In addition, Digital images contaminated with ink mark-
ers also obstruct further analysis as many regions could be
submerged into a dark ink blots appearing in digital images

Fig. 1: Marked histology slides. Shown are two whole slide
images which have been marked by pathologists. For exam-
ple, the circle on the left indicates an area of tumour that
should be used for subsequent sequencing. Our goal is to re-
move such ink marks from digitised images so that these slides
can be used for teaching and computational analysis.

and absence of clear structure of the underlying cells. To en-
able the use of these slides we propose a method for removing
these ink marks and use domain adaptive cycle consistent ad-
versarial generative model for restoration of foreground pix-
els. This work is based on the assumption that the ink marks
do not obscure any diagnostically relevant information.

Ink (referred to “marker ink” in this paper) markings
can of course be made by pens of different colours. These
markings can be on the tissue or outside around the tissue or
both. Also, they are often composed of inconsistent patterns
comprising of various elements like letters, circles, arrows,
numbers or dots or a combination of them (see Fig. 1). Ink
removal from corrupted histopathogy images is very chal-
lenging as these tissue samples also possess inter- and intra-
texture variabilities (e.g. due to inconsistency in staining).

Established methods that are capable of compensating for
staining variations cannot be used to remove ink marks. Ma-
cenko et al. [1] convert RGB colours into corresponding opti-
cal density values to compensate for variations in hematoxylin
and eosin staining. Niethammer and colleagues [2] propose
a colour correction model based on a similar approach but
an improved estimation technique. A look-up table (LUT)
based on the dye concentration absorbed by the sample was
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Fig. 2: Unrealistic hallucinations. The naive application of
generative models using CycleGAN [5] can lead to undesired
results.

built in [3] to correct for staining inconsistencies. Such colour
transformations will not be sufficient to remove high opacity
signals such as permanent ink markings. Given the texture
variation of the original tissue image static transformations
like those stored in look up tables cannot be used to restore
the original image.

Recent developments in deep learning based adversarial
networks [4] allows the modelling of complex data distri-
butions that might not be captured by classical approaches.
When compared to classical stain normalisation approaches
Cycle consistent Generative Adversarial Networks (Cycle-
GANs [5]) can lead to improved results [6]. While these
models are very powerful, the example shown in Figure 2
illustrates that any naive application of such models can lead
to implausible results. In order to minimize such unrealistic
hallucinations, we propose a fully automatic CNN-based ap-
proach that includes: 1) separating background ink corruption
from foreground ink corruption, 2) identifying regions in im-
age tiles with ink, and sparse or compactly arranged cells or
cytoplasms and 3) domain learning, separately for sparse and
densely arranged cell or cytoplasmic distributions. Finally,
we have evaluated our approach on four different whole slide
images contaminated with marker inks.

2. METHOD

We propose a fully automatic convolution neural network
based approach (see Fig. 3) for the classification and restora-
tion of whole slide images containing ink marks in different
colours. Our model includes: 1) Sequential CNN based archi-
tecture for binary classification, 2) Yolov3 [7] for detection of
bounding boxes for ink corrupted and cell cluster regions, and
3) CycleGAN [5] for domain learning. Each of these process
are described below. The code for the presented pipeline with
trained weights and sample images used in this paper has
been made publicly available 1. This tool is only for research
use and is not validated for use in a diagnostic setting.

2.1. Sequential CNN for classification of contaminated
image tiles

We propose to use a sequential convolution neural network
architecture shown in Figure 4 for our two step binary clas-

1https://github.com/sharibox/histopathology-inkRemoval

Fig. 3: Proposed appraoch Rather than applying a global
transformation model, CNN based binary detectors are used
to delineate the ink markings. Subsequently, generative mod-
els are used to replace the missing information. First bi-
nary classification block outputs ink contaminated image tiles
which is then fed to another sequential CNN classifier that
separates image tiles with only background ink from fore-
ground ink. Identified image tiles having only background ink
are replaced with clean image tile (white background in our
case) while the foreground ink contaminated tile goes to the
foreground ink and cluster localization block.

Fig. 4: Binary classifier. The identical CNN architecture is
used to classify if an entire tile or a pixel location contains ink
marks (see Figure 3). The model has 433K trainable parame-
ters and permits rapid training and near real-time execution.

sification: 1) classification of image tiles contaminated with
ink from non-ink ones, and 2) classification of background
contamination from the foreground. We have used cross en-
tropy as loss function and an Adam optimizer with learning
rate of 0.00001. The used model has only 433K trainable pa-
rameters. A total of 1000 samples were utilized to train the
tile classification model and 1746 samples were used for pixel
level background/foreground classification. In each case, we
have used 40% samples for validation and the tiles incorpo-
rate from 4 whole slide images used for training only.

2.2. Precise localization of ink and cluster in the fore-
ground

Precise localization of the ink contaminated areas within each
of image tiles can substantially help in preserving underly-
ing tissue information. That is, only the areas that are con-
taminated with ink are restored while uncontaminated region
is kept intact (see Fig. 5 (a), top, pink box). Secondly, we



(a) (b) (c)

Fig. 5: Ink removal examples Top: a) Identified contamina-
tion of a portion of the image, (b) and (c) identified contam-
ination of the entire tile. Bottom: restoration results using
cycleGAN with (a-b) dense and (c) sparse domain weights. It
is to be noted that only the idenified corrupted part was re-
stored in (a). Pink and green bounding-boxes on the top row
represent ink and cell cluster areas, respectively.

identify image tiles with clustered cells or cytoplasm (see
Fig. 5 (a-b), top, green box). We have used fast and accu-
rate Yolov3 single-shot detector [7]. It predicts simultane-
ously class and bounding box coordinates using convolution
filters and skip connections in multi-scale approach. We have
trained darknet-53 model of Yolov3 for 2 class (ink and clus-
ter) using bounding box annotations on 550 image tiles.

2.3. CycleGANS for generating ink-free images

Generative adversarial networks [4] have become a power-
ful tool for image generation. As the original uncorrupted
image is not available to us, we use CycleGAN which al-
lows to map source domain to target domain without need
for a paired image-to-image mapping. The model consists of
two generator-discriminator pairs that operates cyclically for
mapping image in one domain (A) to another domain (B).
While, generator GB generates image similar to domain B,
discriminator DB evaluates its truthfulness. The generated
images are then mapped to domain A back utilizing another
generator-discriminator pair of domain A. In order to achieve
cycle-consistent mapping function an l1 regularization was
introduced in [5]. Similar cyclic process is repeated in reverse
direction for mapping an image in domain B → A. In gist,
the generator and discriminator plays a game until Nash equi-
librium is achieved, i.e., the generator’s distribution becomes
same as the desired distribution.

Because of the variation of the underlying data distribu-
tion domain learning in histopathology data needs to be care-
fully defined. In order to prevent from over stretching of two

distributions, we propose to utilize two different data distribu-
tion pairs based on cell or cytoplasmic mass clusters, namely:
a) dense and b) sparse. We utilized ≈ 1000 samples each
for training upto 400 epochs with 100 iterations. During the
restoration process, the distribution is identified by our object
detector (see Section 2.2) for which corresponding domain
mapping is applied. In Fig. 5 (a-b) domain learning from
dense distribution is applied while sparse in case of Fig. 5
(c) yielding a very high-quality restorations.

3. EXPERIMENTS

Eight Formalin-Fixed Paraffin-Embedded (FFPE) H&E (Hema-
toxylin and Eosin) stained prostate 75×50 mm slides scanned
using the Objective Imaging desktop scanner at a resolution
40X were used for this study. These slides included ink
marks in four different colours (green, blue, black and red)
that appeared separately or in combination. High-resolution
image tiles (1578 × 1578 pixels) generated by the scanner
were used for our ink removal experiments. For training,
these image tiles were scaled to appropriate resolutions (see
Table 1). However, the trained weights for both localization
and image generation were applied to original image tile
resolution. Restored image tiles were converted to BigTiff
whole slide image format using OIWorkspaceConverter2

for inspection by pathologists. Whole slide images were
viewed in full detail using an standalone workspace viewer
(OISwsViewer 2). The average size of each whole slide image
was around 4.5 GB.

We evaluated our sequential CNN model using an aver-
age of 549 image tiles and Yolov3 model using 100 image
tiles with ground truth annotations. In order to obtain quan-
titative results for cycleGAN, we used CMYK color space
transformation to add ink color markings (from only back-
ground inked tiles in our dataset) on 20 non-corrupted image
tiles in different proportions.

3.1. Quantitative results

Table 1 shows average accuracy ( ¯Acc.) of 95% for our se-
quential CNN model and a mean average precision (mAP) of
75% for Yolov3. Our binary classifier has light weight (5.2
MB) and is computationally very fast both for training (10
mins) and at test time (0.08 s). Experimental results on cy-
cleGAN using distributed weights (sparse-dense) showed an
improvement in all the image quality metrics, notably 28.38
dB to 28.73 dB, 0.69 to 0.71, and 0.75 to 0.78, respectively
for mean values of PSNR (Peak Signal to Noise Ratio), SSIM
(Structure Similarity Measure) and VIF (Visual Information
Fidelity). Some notable improvements for 5 simulated inked
image tiles are provided in Tab. 2. It is worth noting that the
tile #1 has an improvement in PSNR over 4 dB while all other
tiles have more than 1 dB improvement.

2http://www.objectiveimaging.com/download/software.php



Method time/epochs ¯Acc./mAP∗ Size Test load time Train samples Checkpoint size
mins./# % pixel sec # MB

Seq. CNN 10 / 500 95 128× 128 0.08 1000 (1746) 5.2
Yolov3 [7] 120/6000 75∗ 512× 512 0.2 550 246.3
CycleGAN [5] 1080/400 - 256× 256 0.12 532 11.38

Table 1: Quantitative information for different networks used in our proposed ink removal pipeline. All timings are provided
for NVIDIA Tesla P100 GPU.

Tile
PSNR SSIM VIF

Inked Restored Inked Restored Inked Restored
#1 27.10 31.16 0.69 0.87 0.70 0.86
#2 27.43 29.11 0.68 0.81 0.75 0.79
#3 27.66 28.81 0.73 0.73 0.79 0.81
#4 27.68 28.52 0.74 0.78 0.71 0.80
#5 27.87 28.32 0.50 0.60 0.63 0.66

Table 2: Quantitative results. Image quality improvement
for restoration of 5 simulated inked tile images using pro-
posed sparse-dense CycleGAN .

Fig. 6: Background ink removal. Ink removal from back-
ground of histopathology whole slide images using only CNN-
based binary classifier. Left: original image corrupted with
ink, right: restored image. At most times removing only back-
ground markings is sufficient.

3.2. Qualitative results

Visual analysis for fast and accurate ink removal from back-
ground only utilizing solely our binary sequential CNN is
shown in Fig. 6. Other markers like dots and circles as
in Fig. 6 alone do not contain any evidential information
once the surrounding texts are removed. 5 out of 8 of our
whole slide images had marker inks mostly on the back-
ground. Fig. 7 (left) shows marker ink mostly on foreground
pixels that also include parts of tissues. We utilize our com-

Fig. 7: Foreground and background ink removal. Ink
removal from foreground and background of histopathology
whole slide images using our pipeline. Left: original image
corrupted with ink, right: restored image. Images have been
scaled to 10% of original image size.

Fig. 8: Failed cases. Added textures in restored image tiles.

plete pipeline process to realistically remove and restore ink
contaminated regions. Fig. 7 (right) shows restored whole
slide image which is visually coherent and marker ink has
been substantially removed from both background and fore-
ground. Fig. 8 presents some of failure results where the
restoration is not perfect and addition of some texture can be
clearly observed.

4. CONCLUSION

We have proposed a content-aware and fully automatic deep
learning based pipeline for efficient removal of marker inks
from whole slide images without sacrificing information. We
performed both quantitative and qualitative evaluations of
each of the method separately which showed the efficacy
of the methods. This work addresses a key issue faced by
pathologists regarding usability of whole-slide images for
study and research.
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