
FINE-GRAINED LESION ANNOTATION IN CT IMAGES WITH KNOWLEDGE MINED
FROM RADIOLOGY REPORTS

Ke Yan? Yifan Peng† Zhiyong Lu† Ronald M. Summers?

? Imaging Biomarkers and Computer-Aided Diagnosis Lab, Radiology and Imaging Sciences,
National Institutes of Health (NIH) Clinical Center

†National Center for Biotechnology Information, National Library of Medicine, NIH

ABSTRACT

In radiologists’ routine work, one major task is to read a med-
ical image, e.g., a CT scan, find significant lesions, and write
sentences in the radiology report to describe them. In this pa-
per, we study the lesion description or annotation problem as
an important step of computer-aided diagnosis (CAD). Given
a lesion image, our aim is to predict multiple relevant labels,
such as the lesion’s body part, type, and attributes. To address
this problem, we define a set of 145 labels based on RadLex to
describe a large variety of lesions in the DeepLesion dataset.
We directly mine training labels from the lesion’s correspond-
ing sentence in the radiology report, which requires minimal
manual effort and is easily generalizable to large data and la-
bel sets. A multi-label convolutional neural network is then
proposed for images with multi-scale structure and a noise-
robust loss. Quantitative and qualitative experiments demon-
strate the effectiveness of the framework. The average area
under ROC curve on 1,872 test lesions is 0.9083.

Index Terms— Lesion annotation, radiology report,
multi-label classification, noisy label, CNN

1. INTRODUCTION

Lesion detection and classification are important research top-
ics in computer-aided diagnosis (CAD) [1, 2, 3]. Existing
lesion classification studies typically focus on certain body
parts (e.g. skin [1] and liver [2]) and classify the types of le-
sions (e.g. cyst, metastasis, and hemangioma in liver [2]). In
this paper, we tackle a more general problem to mimic radi-
ologists. When an experienced radiologist reads a medical
image such as a computed tomography (CT) scan, he or she
can find all kinds of lesions in various body parts, and tell the
lesions’ detailed body part, type, and attributes. We aim to de-
velop an algorithm to predict these characteristics assuming
that the lesion has been detected or manually marked on an
image. In brief, we hope the computer will comprehensively
understand the lesion and answer the question “what is it?”.
We call it lesion annotation as it is similar to the multi-label
image annotation problem in computer vision. We expect it to
be an important step towards a fully automated CAD system.

The main challenge of this task is the lack of training
labels. Existing lesion classification studies [1, 2] generally
need professionals to label the lesions manually, which is ac-
curate but tedious and not scalable. Some researchers lever-
aged the rich information contained in radiology reports, but
there was no lesion-level correspondence between image and
text, thus the extracted labels cannot be accurately mapped to
specific lesions [4, 5]. Another stream of study directly gen-
erates the report according to the whole image with an atten-
tion mechanism to switch among lesions [6]. We did not ex-
plore this direction because it is difficult to assess the usability
of computer-generated reports as their quality is seemingly
low for practical use. Instead, if we can predict the lesion-
describing keywords accurately, the creation of high-quality
(structured) reports would be quite straightforward.

To find lesion-level labels, we leveraged the recently re-
leased DeepLesion dataset [3]. DeepLesion consists of over
30K lesions on a variety of body parts in CT images. Over
20K of them have corresponding sentences in reports indi-
cated by hyperlinks. Examples of lesion images and sen-
tences can be found in Fig. 3. We collected a fine-grained la-
bel list based on the RadLex lexicon [7], extracted these labels
from the sentences that contain the hyperlinks, and used them
as the labels of the lesion image. This process is entirely data-
driven and requires minimal manual effort, thus can be easily
employed to build large datasets with rich vocabularies.

To improve the coverage of the label list, we added syn-
onyms of each label based on RadLex. The hierarchical rela-
tionship between the labels was also annotated and used to ex-
pand the label set for each lesion (e.g., before expansion: lung
nodule; after expansion: lung nodule, lung, nodule, chest).
A multi-label convolutional neural network (CNN) was then
adopted to predict all labels for each lesion simultaneously.
Since different labels may be best modeled by features at dif-
ferent levels, we modified the structure of the CNN to facil-
itate multi-scale feature fusion. The loss function was also
improved to balance rare labels and mitigate the influence of
noisy labels. Experimental results proved our lesion annota-
tor can predict the fine-grained body part, type, and attributes
of a variety of lesions with high accuracy.
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2. LABEL MINING FROM REPORTS

We used the DeepLesion dataset [3] and its accompanying
radiology reports to learn our model. In our hospital, radiol-
ogists sometimes mark significant lesions on images and in-
sert hyperlinks, size measurements, or slice numbers (called
bookmarks) in reports. Using these bookmarks, we can link
the lesion region with the sentence that describes it, and thus
obtain lesion-level label annotations. To mine the labels, we
first tokenized the sentence that contains the lesion bookmark,
and then lemmatized the words in the sentence using NLTK
[8] to obtain their base forms. RadLex [7] v3.15 was adopted
as our lexicon. We extracted all labels and their synonyms
from RadLex. Since most labels in RadLex are nouns, we
manually added some adjective synonyms, for example, “hep-
atic” is a synonym of “liver”. After doing whole-word match-
ing on the sentences and merging the synonyms, we kept the
labels with more than 5 occurrences in the test set (1,872 sam-
ples), resulting in a list of 145 labels.

The labels can be categorized into three classes: 1. body
parts (95 labels in total), which include coarse-scale body
parts (e.g., chest, abdomen), organs (lung, lymph node),
fine-grained organ sub-parts (right lower lobe, retroperi-
toneum lymph node), and other body regions (porta hepatis,
paraspinal); 2. findings / types (24 labels), which include
coarse-scale ones (nodule, mass) and more specific ones
(liver mass, ground-glass opacity); 3. attributes (26 labels),
which describe the intensity, shape, size, etc. of the lesions
(hypoattenuation, spiculated, large). This is a comprehensive
set of labels. There are hierarchical relationships between
labels, e.g., “lung nodule” belongs to “lung” and “nodule”.
Therefore, we further extracted the parent-child relationship
of the labels from RadLex followed by manual correction. A
subgraph of the relationship is shown in Fig. 1.

Fig. 1. Sample labels with relationships. Arrows point from
the parent label to the child. Blue, red, and green indicate
body part, type, and attribute, respectively. The numbers be-
low each label are the numbers of training and test samples.

The relationship graph was used to expand the label set
of a lesion. If a child label is true, all its parent labels should

also be true. Then, we can construct a label vector y for each
lesion. yi = 1 if and only if label i is in the expanded la-
bel set. It should be noted that in free-text reports, the labels
used to describe lesions are often incomplete and in various
detail levels. For example, a “left upper lobe nodule” may
be simply depicted as a “lung nodule”. It is common to have
missing information in the labels. However, we found our al-
gorithm actually worked well with the noisy training labels
[9], and can be further improved by applying a noise-robust
loss function to be introduced in the next section.

3. LESION ANNOTATION CNN

Given a lesion that has been detected or manually marked on
an image, our goal is to predict a confidence score for each
of the 145 labels. This is a multi-label classification problem.
The structure of the proposed CNN is illustrated in Fig. 2. We
first resized the axial CT image to normalize the spacing to 1
mm/pixel. Then, we cropped a fixed-sized 120mm×120mm
patch centered on the lesion. To encode 3D information, we
used 3 neighboring slices (interpolated at 2 mm slice inter-
vals) to compose a 3-channel image. The image was sent
to a VGG-16 [10] CNN with batch normalization (VGG-16
showed better accuracy than AlexNet and ResNet50).

Fig. 2. Architecture of the proposed multi-scale multi-label
CNN for lesion annotation.

One challenge of the task is that different labels may be
best modeled by features at different levels. For instance,
when predicting intensity and shape attributes, lower-level
features are more appropriate. When predicting body parts,
the context around the lesion is important, which is contained
in higher-level features. Therefore, we combined features
from the 5 stages of VGG-16 to get a multi-scale represen-
tation. Because of the variable sizes of the lesions, region
of interest (ROI) pooling layers were used to pool the feature
maps to 5×5×channel separately. For conv1-conv3, the ROI
is the bounding box of the lesion in the patch to focus on its
details. For conv4 and 5, the ROI is the entire patch to capture
the context of the lesion. Each pooled feature map was then
passed through a fully-connected layer (FC) and concatenated
together. The output of the network is 145 independent scores
after another FC layer and a sigmoid function.

Another challenge comes from the extremely imbalanced
number of positive labels in different classes. Among the
19,992 training lesions, the most prevailing label (chest) have



9013 positive labels, while the rarest label (internal iliac
lymph node) have only 6 positive labels. Generally, coarse-
scale body parts and types occur more frequently. If we
simply learn a cross-entropy loss for each label, the model
will barely learn from rare labels and will always generate
low scores for them. A simple solution is to balance the pos-
itive and negative cases in each label by assigning different
weights, as in Eqs. 1 and 2, where wc,pos, wc,neg are the loss
weights given to the positive and negative cases of label c,
Nc,pos and Nc,neg are the numbers of positive and negative
training cases of label c, respectively.

Our training labels contain noise since they were extracted
from free-text reports. As mentioned in Section 2, there are
missing labels in some sentences. In addition, a small num-
ber of labels in some sentences are not relevant to the referred
lesion. To handle label noise, we replaced the standard cross-
entropy loss with the soft bootstrapping loss [11]. The basic
idea is to modify the training label based on the current pre-
diction of the model.

The overall loss function of our model for one sample is
shown in Eq. 1, whereK is the total number of labels, ỹc is the
bootstrapped label, sc ∈ [0, 1] is the score of label c predicted
by the network. In Eq. 3, the bootstrapped label is defined as
the weighted sum of the original label yc and the predicted
score sc [11]. We empirically set the weight β = 0.9 in this
paper. If the original label is incorrect and the prediction is
close to the actual correct label, the bootstrapped loss will
be smaller than the original loss to mitigate the influence of
the noisy label. Experimental results show this strategy can
improve the prediction accuracy.

L =

K∑
c=1

(wc,posỹc log(sc) + wc,neg(1− ỹc) log(1− sc)) ,

(1)

wc,pos =
Nc,pos +Nc,neg

2Nc,pos
, wc,neg =

Nc,pos +Nc,neg

2Nc,neg
, (2)

ỹc = βyc + (1− β)sc. (3)

4. EXPERIMENTS

We extracted 19,992 lesion-sentence pairs from DeepLesion
for training, and another 1,872 pairs for testing. There was
no patient-level overlap between the two sets. The test sen-
tences were manually checked to remove labels that were ir-
relevant to the corresponding lesions. However, there may
still be missing labels, which will require significant amount
of manual effort to complete. In this regard, we argue that
results on this test set is a nonperfect but reasonable surrogate
of the actual accuracy.

The proposed CNN was randomly initialized. It was
trained using stochastic gradient descent for 15 epochs with
an initial learning rate of 0.01, which was reduced to 0.001 at
epoch 12. The batch size was 128. We computed the AUC,
i.e. the area under the receiver operating characteristic (ROC)

Method Overall Body part Type Attribute
VGG-16 0.8121 0.8600 0.7618 0.6836
+ loss weight 0.8952 0.9443 0.8344 0.7719
+ multi-scale 0.9045 0.9443 0.8600 0.8000
+ bootstrap loss 0.9083 0.9431 0.8659 0.8203

Table 1. AUC averaged on different label subsets.

curve [4], for each label on the test set. Table 1 displays the
results of different methods. In the first row, we evaluated a
baseline method by directly attaching a global average pool-
ing layer and an FC layer after VGG-16 with BatchNorm
to predict the 145 labels. Then, we added the loss weight
in Eq. 2. As shown in the second row, the AUC increased
significantly. The improvement is larger on rarer labels. We
further applied the multi-scale structure in Fig. 2, and show
the results in the third row of Table 1. Prediction accuracies
of lesion types and attributes were improved because they
rely more on fine details of the lesion, which is contained in
mid- and low-level features. Finally, we further implemented
the noise-robust bootstrapping loss in Eq. 3. The accuracy
of lesion attributes was improved the most, possibly because
there are many missing attributes in the reports as radiologists
typically do not describe every attribute of a lesion in the re-
port. Besides, some attributes may be subjective. Although
missing labels are also a problem for fine-grained organ sub-
parts, they did not affect the accuracy. It is because organ
subparts have relatively stable appearance and are easier to
learn. The final overall AUC is 0.9083± 0.0951.

To elaborate the results in Table 1, we exhibit the AUCs
of some specific labels in Table 2. Lymph nodes exist all over
the body and have variable contextual appearance. Hence,
its AUC is lower than its child label, retroperitoneum lymph
node, whose appearance is relatively stable. Body regions
such as porta hepatis and paraspinal also have stable appear-
ance and high AUC. Similarly, coarse-scale lesion types such
as mass and nodule have variable appearance and are slightly
subjective, while finer-scale ones like liver mass and ground-
glass opacity are more stable, which explains their difference
in AUC. Some attributes are subjective or subtle, e.g. “large”
and “hypoattenuation”, thus attributes have lower average
AUC than types and body parts.

Qualitative results are shown in Fig. 3. In the first exam-
ple, our algorithm accurately predicted the fine-grained body
part and type of a lung nodule. In the second one, a medi-
astinum lymph node was correctly predicted. The label “su-
perior mediastinum” was regarded as false positive, but it is
actually a missing true label. In the third example, we iden-
tified the lesion’s body part: left adrenal gland. Kidney has
relatively high score because it is close to the adrenal gland
and sometimes confusing for the model. The false negative
labels exist possibly due to their variable (nodule, neoplasm)
or subtle (hypoattenuation) appearance.



Label AUC Label AUC
Chest 0.9426 Nodule 0.8885
Abdomen 0.9414 Mass 0.8370
Lung 0.9750 Liver mass 0.9690
Lymph node 0.9163 Ground-glass opacity 0.9770
Right lower lobe 0.9646 Hypoattenuation 0.8809
Retroperitoneum
lymph node

0.9665 Spiculated 0.8236

Porta hepatis 0.9772 Calcified 0.7213
Paraspinal 0.9947 Large 0.7189

Table 2. AUC of typical labels.

 

Lesion #25959  

TP: Chest 0.9758 

TP: Lung 0.9649 

TP: Right lung 0.8569 

TP: Nodule 0.8081 

TP: Right mid lung 0.7622 
 

Within the right middle lobe there is a stable nodule that measure BOOKMARK 

(1.3 cm x 1.3 cm) (series 5, image 79). 

 

Lesion #7133  

TP: Mediastinum 0.9565 

TP: Chest 0.9367 

TP: Lymph node 0.9313 

TP: Mediastinum lymph node 0.8564 

FP: Superior mediastinum 0.7196 
 

Increased number of small to moderately enlarged mediastinal node BOOKMARK 

(1.1 cm x 0.7 cm). 

 

Lesion #17734  

TP: Left adrenal gland 0.9390 

TP: Adrenal gland 0.8534 

TP: Abdomen 0.8018 

TP: Retroperitoneum 0.7977 

FP: Kidney 0.6369 

  

FN: Adenoma 0.4635 

FN: Nodule 0.3984 

FN: Hypoattenuation 0.3158 

FN: Neoplasm 0.2697 
 

Low density left adrenal nodule BOOKMARK (1.9 cm x 1.3 cm), likely adenoma. 

  

 

 
Fig. 3. Examples of the lesion image, report sentence, and our
predicted labels with scores (based on the image alone) on the
test set. The bounding-box and diameters in the image mark
the lesion. “BOOKMARK” in the report is the hyperlink we
used to locate the sentence. We treat the top-5 in the 145
prediction scores of a lesion as its predicted labels. The true
labels in top-5 are true positives (TP, in green), false labels in
top-5 are false positives (FP, in red), and the true labels not in
top-5 are false negatives (FN, in blue).

5. CONCLUSION

In this paper, we mined fine-grained lesion-level description
from free-text reports, and then linked them with lesion im-
ages to build a comprehensive lesion annotation algorithm.
Our future work includes using natural language processing
algorithms to reduce label noise in reports [4], as well as im-
proving prediction accuracy on hard labels and rare labels.
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