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Abstract

Cortical folding of the adult brain is highly convoluted and encodes inter-subject variable 

characteristics. Recent studies suggest that it is useful for individual identification in adults. 

However, little is known about whether the infant cortical folding, which undergoes dynamic 

postnatal development, can be used for individual identification. To fill this gap, we propose to 

explore cortical folding patterns for infant subject identification. This study thus aims to address 

two important questions in neuroscience: 1) whether the infant cortical folding is unique for 

individual identification; and 2) considering the region-specific inter-subject variability, which 

cortical regions are more distinct and reliable for infant identification. To this end, we propose a 

novel discriminative descriptor of regional cortical folding based on multi-scale analysis of 

curvature maps via spherical wavelets, called FoldingPrint. Experiments are carried out on a large 

longitudinal dataset with 1,141 MRI scans from 472 infants. Despite the dramatic development in 

the first two years, successful identification of 1-year-olds and 2-year-olds using their neonatal 

cortical folding (with accuracy > 98%) indicates the effectiveness of the proposed method. 

Moreover, we reveal that regions with high identification accuracy and large inter-subject 

variability mainly distribute in high-order association cortices.
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1. INTRODUCTION

The human cerebral cortex is highly convoluted and exhibits remarkable inter-subject 

variability. Current studies have found that the adult brain cortex, when characterized by 

structural or functional features from MRI, is unique and reliable for individual 

identification [1, 2]. For example, a shape descriptor of brain morphology based on Laplace-

Beltrami operator, called BrainPrint [1], was developed to characterize the cortical and 

subcortical structures and is effective for adult identification. Several other studies found the 

inter-individual variability of the functional connectivity and proposed the functional 

connectome fingerprinting for individual identification [2]. However, all existing individual 

identification studies based on the brain MRI are carried out on adult datasets, in which the 
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brain change is typically subtle between different scans. It is still an open question that 

whether the infant brain MRI is reliable for individual identification during infancy.

Compared to the adult identification studies, the infant identification studies are more 

challenging. The difficulties are mainly in two aspects: first, the infant cortex undergoes 

regionally-heterogeneously dynamic growth, especially in the first two years, which is the 

most dynamic phase of postnatal brain development [3]. Thus, the features developed for 

infant identification should be able to capture the unique individual-specific information, 

which is robust to the dynamic early brain development. The existing features for adult brain 

identification are not applicable for infant identification. For instance, BrainPrint [1], which 

is only appropriate for the simple isometric changes, cannot deal with the region-variable 

cortical expansion and the emerging tertiary cortical folds during infancy. Second, compared 

to the wide availabilities of adult MRI datasets and processing tools, large-scale longitudinal 

infant datasets and dedicated computational tools are rare and precious. This is because it is 

difficult to collect the quality motion-free infant MR images and their follow-up scans, and 

also difficult to process infant MR images, typically exhibiting extremely low tissue contrast 

and dynamic appearance.

To this end, in this work, we propose a novel highdimensional cortical folding descriptor 

based on multi-scale decomposition of curvature maps via spherical wavelets, called 

FoldingPrint, for infant identification. The motivation of using cortical folding is that, 

although the infant brain develops dynamically in the first years, all the primary and 

secondary cortical folds forming the major cortical folding patterns are established at term 

birth and are largely preserved during brain development [4], as shown in Fig. 1. 

Experiments are carried out on a large longitudinal infant dataset with 1,141 MRI scans 

during the first two years from 472 infants. Based on our results, we address two important 

neuroscientific questions: 1) whether the cortical folding of each infant is unique for 

individual identification; and 2) which cortical regions are more variable across individuals 

and more reliable for infant identification.

2. METHODS

2.1. Data Acquisition and Cortical Surface Mapping

Longitudinal brain MR images from 472 healthy infants were acquired at birth, 1 and 2 

years of age, using a 3T Siemens scanner. In total, 1,141 longitudinal scans were obtained, 

including 472 neonates, 387 1-year-olds, and 282 2-year-olds. T1-weighted images were 

acquired by using the following imaging parameters: TR / TE = 1900 / 4.38 ms, and 

resolution = 1×1×1 mm3. T2-weighted images were acquired by using the following 

settings: TR / TE = 7380 / 119 ms, and resolution = 1.25×1.25×1.95 mm3.

All MR images were processed using an infant-dedicated computational pipeline [5]. The 

preprocessing includes the following main steps: skull stripping, cerebellum removal, 

intensity inhomogeneity correction, tissue segmentation, hemisphere separation, and 

topology correction. For each hemisphere of each scan, the inner cortical surface was 

reconstructed by using a deformable surface method and mapped onto a spherical space [6]. 

Each spherical cortical surface was aligned onto the age-matched template in the UNC 4D 
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infant cortical surface atlas [5, 7] using Spherical Demons [8]. For each cortical surface, a 

parcellation map with 34 regions of interest (ROIs) [9] was obtained by propagation of the 

parcellation map in the atlas.

2.2. Computing Cortical FoldingPrints

To identify infants based on the rapidly developing cortical folding, we need to construct 

discriminative cortical folding features, which are able to capture subject-specific distinct 

folding patterns and meanwhile are robust to the emerging tertiary cortical folds during the 

early brain development. To this end, we first decomposed the mean curvature map on the 

cortical surface into multiple complementary spatial-frequency scales using over-complete 

spherical wavelets [10], thus comprehensively characterizing the cortical folding in multi-

scales. Then, for each cortical region, we created a high-dimensional multivariate folding 

descriptor, i.e., FoldingPrint, based on the joint probability distribution of the decomposed 

multi-scale curvature maps.

Multi-scale Decomposition of Curvature Maps: First, the mean curvature map of 

each inner cortical surface (with a spherical topology) was calculated for each scan. Then, 

the mean curvature map was decomposed into multiple spatial-frequency scales, via the 

over-complete spherical wavelet transform [10], where each wavelet scale is sufficiently 

sampled, thus free from sampling aliasing. Let C be the input spherical curvature map and 

hn n = 1
N  be the spherical analysis filters at N = 7 frequency levels, a series of wavelet 

coefficient maps Wn can thus be obtained at multiple spatial-frequency scales by convolving 

them in the spherical domain as:

Wn = C * hn (1)

Herein, hn is defined as: hn = Qnψ, where n is the frequency level (with a larger n 

corresponding to a narrower filter), and ψ is the mother wavelet, and Qnψ represents the 

dilations of ψ. The Laplacian-of-Gaussian was adopted as the mother wavelet ψ as in [10]. 

As the underlying wavelet basis functions have local supports in both space and frequency, 

the multi-scale wavelet coefficient maps can thus encode rich information of cortical folding 

at different levels. As we can see from Fig. 2(a), at coarser levels, the wavelet coefficients 

encode the larger scale folding information; while at finer levels, the wavelet coefficients 

capture the smaller scale folding information. Thus, the decomposed curvature maps lead to 

multi-scale folding characteristics.

Region-based Folding Descriptor: To create a comprehensive folding descriptor, we 

computed a highdimensional joint probability distribution of three most informative 

curvature scales, i.e., a 3D joint histogram, in each ROI as its FoldingPrint. The proposed 

regional FoldingPrint is able to couple the robustness of region-based analysis with the 

richness of multi-scale curvature maps.

Given a cortical surface and its decomposed curvature maps {Wn}n=1…7, we adopted three 

most informative scales of the decomposed curvature maps, in consideration of the 
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exponential growth of the feature dimension when adding all scales of curvature. For a given 

ROI r with a collection of vertices {v}v=1…Vr, its FoldingPrint Hr is a 3D joint histogram 

for capturing multi-scale structural information. Of note, we can also adopt the kernel 

density estimation (KDE) to improve the smoothness of the descriptor. Herein, the histogram 

was calculated through the following steps: 1) Linearly dividing the 3D space of the selected 

decomposed curvature maps Wi, Wj, and Wk into X×Y×Z bins; 2) Inserting all vertices in 

{v}v=1…Vr into Hr : ᗄ1 ≤ x ≤ X, ᗄ1 ≤ y ≤ Y, ᗄ1 ≤ z ≤ Z. Hr is thus defined as:

Hr(x, y, z) =  Count  v ∈ Hr: Wi(v), W j(v), Wk(v) ∈ B(x, y, z) (2)

where Wi(v), Wj(v), and Wk(v) are the decomposed curvature values of vertex v at levels i, j, 
and k, respectively. B(x, y, z) denotes the bin corresponding to the x-th interval of wi, y-th 

interval of Wj, and z-th interval of wk; 3) Normalizing Hr by dividing the total vertex 

number in the ROI r. Herein, we chose X = Y = Z = 10, thus obtaining a 1000 dimensional 

descriptor for each ROI. Of note, Hr is independent of the resolution of the cortical surface 

mesh, thus is robust to different surface reconstruction tools. Moreover, Hr is independent 
from surface registration.

In our application, we selected the decomposed curvature maps W2, W3, and W4, i.e., levels 

2 to 4, as shown in Fig. 2(a). We abandoned other scales due to the following reasons. On 

one hand, the coarsest level (level 1) mainly captures very large scale folding information, 

which is very similar across subjects and thus not discriminative for infant identification. On 

the other hand, the finer levels (levels 5 to 7) mainly embed small scale folding information, 

which is typically sensitive to the tertiary cortical folds emerging during postnatal 

development and noises, and thus not reliable for infant identification. In contrast, the 

middle levels (levels 2 to 4) are robust to cortical development and thus are discriminative 

for infant identification.

In this way, for each subject, we can obtain a series of high-dimensional regional folding 

descriptors{Hr}r=1…R, together forming FoldingPrints. In this study, R = 68 is the total 

number of ROIs in two hemispheres. Fig. 2(b) shows the graphical representations of the 

FoldingPrint of a region (i.e., the left caudal middle frontal gyrus) from 2 subjects at their 0 

and 2 years of age. Herein, each 3D FoldingPrint is projected onto three 2D planes for better 

visualization. It can be seen that the FoldingPrint is able to capture the stable subject-

specific folding pattern during development.

2.3. Infant Identification based on FoldingPrints

With the FoldingPrint of each region, we can simply compare all regions’ FoldingPrints to 

identify infants. To measure the difference between two scans p and q in r-th ROI with 

FoldingPrints Hr
p and Hr

q, we chose the widely-used Chi-squared histogram distance:

Dr(p, q) = ∑x = 1
X ∑y = 1

Y ∑z = 1
Z Hr

p(x, y, z) − Hr
q(x, y, z) 2

Hr
p(x, y, z) + Hr

q(x, y, z)
(4)

Duan et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2020 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Of note, other histogram distance measures, e.g., earth mover’s distance, could also be 

alternatively adopted here.

Given a new coming infant to be identified, in each cortical ROI, the distance of 

FoldingPrints between this infant and each subject in a specific age group in the database 

was calculated. Then, all distances were sorted in an increasing order, and the subject with 

the smallest distance in the database was regarded as a potentially-identified subject. Based 

on all 68 ROIs, for each subject to be identified, 68 identification results were obtained. 

Then through a simple majority voting, without training any classification model, the subject 

with the highest frequency among the potentially-identified subjects was considered as the 

finally-identified subject. Of note, if more than one subjects show the highest frequency, the 

one with smaller distance was regarded as the identified subject.

3. RESULTS

The proposed method was applied to a large longitudinal infant MRI dataset with 1,141 

scans at 0, 1, and 2 years of age. Three sets of experimental tasks were carried out to 

evaluate the identification accuracy of our method, i.e., 1) using the scans at birth to identify 

their corresponding scans at year 1; 2) using the scans at birth to identify their corresponding 

scans at year 2; and 3) using the scans at year 1 to identify their corresponding scans at year 

2. Since cortical folding develops more rapidly in the first year than the second year [3], the 

first two tasks are more challenging.

Table 1 reports the accuracies of infant identification on three tasks using our proposed 

FoldingPrints and other feature combinations. Compared to different 2D or 3D joint 

distributions of the decomposed curvatures at levels 2–5, we found that the 3D joint 

distribution with the decomposed curvatures at levels 2, 3 and 4 achieved the best 

performance. In comparison, we have also extensively tested different joint distributions of 

the traditional cortical folding features, i.e., mean curvature, sulcal depth, and average 

convexity. As we can see, these high-dimensional features still failed to show comparable 

performance as the proposed FoldingPrints, especially in the first two tasks. The underlying 

reason may be that multi-scale decomposed curvature maps contain complementary 

information. Thus, their combinations capture more complete information of the cortical 

folding. In contrast, the relationship among those traditional cortical folding features are 

unclear. Thus, their combinations would not necessarily improve the performance. Besides, 

by setting the numbers of the histogram bins to 10, 15, and 20, we found that the 

performance of FoldingPrints does not strongly rely on this number, since they maintain 

better performance in all cases, compared to other feature combinations. The best 

performance is found with 10 bins for the above three tasks, with the accuracies of 98.97%, 

98.58%, and 100.00%, respectively. These results suggest that our proposed FoldingPrints 

are effective for infant identification, even for the challenging tasks involving neonates.

We further evaluated the identification accuracy of each ROI in the first two tasks and 

mapped the results onto the cortical surface, as shown in Fig. 3. The regions with high 

accuracy are more reliable for infant identification, and thus their folding patterns should be 

more distinctive and variable across individuals. As can be seen, overall most of the high-
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order association cortices, i.e., the prefrontal cortex (including the caudal middle frontal 

gyrus, rostral middle frontal gyrus and superior frontal gyrus), middle temporal gyrus, and 

inferior parietal gyrus, as well as the precentral gyrus show higher accuracy in infant 

identification, indicating their distinct folding patterns across subjects. While the auditory, 

visual, and insular regions show lower accuracy, suggesting their less variable folding 

patterns across individuals. These region-specific patterns are similar in both tasks and also 

are relatively symmetric across left and right hemispheres. These findings are supported by 

the current knowledge on inter-individual variability [11].

4. CONCLUSION

For the first time, we explored infant identification based on cortical folding in a large 

longitudinal dataset. Our contribution is mainly in two aspects. First, we proposed a regional 

cortical folding descriptor, i.e., FoldingPrint, for infant identification, which is capable of 

comprehensively characterizing the invariance of developing cortical folding and achieves 

promising identification accuracy. Thus, once brain MRI scans become cheap and 

convenient to acquire, FoldingPrints could be used as reliable biometric traits for infant 

identification. Second, leveraging FoldingPrints, we found that the cortical regions with high 

identification accuracy are distributed mostly in the high-order association cortices, 

indicating their high inter-subject variability. This study sheds some light on the individual 

identification and the inter-subject cortical variability during infancy.
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Fig. 1. 
Longitudinal cortical surfaces at 0, 1, and 2 years of age of two subjects. Cortical surfaces 

are color-coded by mean curvature.
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Fig. 2. 
(a) The mean curvature map (left panel) and the decomposed curvature maps at levels 1–7 

by over-complete spherical wavelets (right panel). (b) Graphical representations of the 

FoldingPrint of the left caudal middle frontal gyrus from two subjects at their 0 and 2 years 

of age. For visualization, each 3D FoldingPrint is projected onto three 2D planes.
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Fig. 3. 
Region-specific accuracies in infant identification.
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