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Abstract. In this paper we examine data fusion methods for multi-
view data classification. We present a decision concept which explicitly
takes into account the input multi-view structure, where for each case
there is a different subset of relevant views. This data fusion concept,
which we dub Mixture of Views, is implemented by a special purpose
neural network architecture. It is demonstrated on the task of classifying
breast microcalcifications as benign or malignant based on CC and MLO
mammography views. The single view decisions are combined by a data-
driven decision, according to the relevance of each view in a given case,
into a global decision. The method is evaluated on a large multi-view
dataset extracted from the standardized digital database for screening
mammography (DDSM). The experimental results show that our method
outperforms previously suggested fusion methods.

1 Introduction

Over the years, research has been actively seeking the best ways to integrate data
from multiple sources. Data fusion can be performed at the raw data, feature
level and decision level. Feature-level fusion involves concatanating the features
extracted from each view as an input to a decision system. Decision level fusion
is based on averaging the decisions obtained from each sensor independently.

In the medical field, multi view data fusion has been researched for number
of applications. Prasoon et al. [6] combined features from orthogonal patches
in order to segment knee cartilage. Setio et al. [8] used decision level fusion on
orthogonal patches in a pulmonary nodule detection CAD. The current study
deals with multi-view mammography image information fusion. In this task, in-
formation from images acquired from different angles is aggregated for automatic
classification of breast microcalcifications (MC) as benign or malignant. Recent
studies (e.g. [7] [10]) have confirmed the superior performance of a multi-view
CADx system over its single-view counterpart. Bekker et al. [1] proposed aver-
aging the two view-level decisions. There is, however, a structure specific to this
problem that is not explicitly modeled by equal weight averaging or even by a
weighted average with fixed weights. Screening mammography typically involves
taking two views of the breast, from above and from an oblique, since a 3D
pathology indication is not always clearly observed in a single 2D image. Thus
an expert radiologist’s diagnosis of malignance is based on evidence that is not
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necessarily clearly seen in both views.
In this study we introduce a neural network (NN) architecture that explicitly
takes into account the multiple-view structure of the problem by integrating view
level decision making. We present an automatic data-driven strategy that finds
which view conveys more relevant information for clinical decision making. In-
stead of simple averaging of the view-level decisions, we train a ‘gating’ network
that decides the best way to average the view-level decisions for each case. Our
method is related to the well-known Mixture of Experts (MoE) model [4]. Unlike
classical MoE which divides the task among a set of experts in an unsupervised
way, in MoV each expert is associated with a sensor (or a view). We describe a
neural network architecture that implements the MoV concept.

To evaluate the method we use the labeled multi-view mammogram dataset
DDSM [3]. It contains MCs location in both views marked by experts and we
also have the biopsy results, showing whether the abnormities were benign or
malignant. Experiments were performed on pairs of CC+MLO views extracted
from the DDSM dataset. Fig. 1 shows benign and malignant examples from the
DDSM dataset. The results when applying the MOV to the DDSM dataset show
that using our approach outperforms previously suggested fusion methods.

Fig. 1: Examples of benign and malignant MC clusters (from the DDSM dataset).
ROI sizes range from 2mm× 2mm to 6mm× 6mm.

2 The Mixture of Views Network architecture

In this study we deal with a classification task where the features are obtained
from multiple sensors. Our goal is to construct a neural network architecture
which is aware of this input structure and takes advantage of it to improve clas-
sification performance. In this section we first describe the probabilistic frame-
work we use to model the multi-view data fusion classification and then derive a
training algorithm that simultaneously finds the parameters of each view-based
classifier and the parameters of a gating network that decides which view is more
relevant for a given input feature set. Hereafter we use the terms sensor and view
interchangeably.



Assume a feature vector x is a concatenation ofm components x = (x1, ..., xm)
such that each component is obtained from a different sensor. Each sensor can
provide a different number of features. The standard way of classifying an object
based on features from multiple views is to concatenate the view-level inputs and
using the concatenated vector as an input to a standard neural-network classifier.

A model based on concatenation, however, does not take into account the
structure of the system, as a fusion of several views. Each view has enough infor-
mation to make its own reasonable prediction and, in principle, each component
can be used alone for the classification task. In addition not all the views are
equally relevant in each case. We propose a model that computes each view-level
prediction separately and then combines them to form the final estimation. In
other words, in our approach we concatenate the view-level decisions instead of
the view-level features. We also analyze the features provided by different views
and combine the predictions dynamically, according to the relevance of the view
in each case.

Assume we are given a k-class classification problem with labels denoted by
1, ..., k and input x composed of m view-level components denoted by x1, ..., xm.
For the classification task we use a neural network that combines the view-level
decisions. Let θ = {θg, θ1, θ2, · · · , θm} be the model parameters, where θi are
the parameters of the network that performs a classification based solely on the
component xi and θg is the parameter-set of a gating network that computes
a data-driven distribution over all the views. The final decision is derived by
computing a weighted average of the view-level decisions where the weights are
provided by the gating networks.

The network has three main components: a set of neural-networks where each
one renders a decision based solely on a single sensor, a gate neural-network that
defines those sensors whose individual sensor-based opinions are trustworthy, and
a weighted sum of experts, where the weights are the gating network outputs.

In the MoV model the probability of input x being labeled as c ∈ {1, ..., k}
is:

p(y = c|x; θ) =

m∑
i=1

p(i|x; θg)p(y = c|xi; θi). (1)

We can view the model as a two-step process that produces a decision y given
an input feature set x. We first use the gating function to select the view that
conveys the relevant information for decision making and then apply the corre-
sponding network to determine the output label.

As stated above, the MoV model can be viewed as an instance of Mixture of
Experts (MoE) modeling. The MoE approach was introduced more than twenty
years ago [4], and combines the decisions of several experts, each of which special-
izes in a different part of the input space. The MoE model is based on the “divide
and conquer” paradigm, which solves complex problems by dividing them into
simpler ones and combine their solutions to solve the original task. The model
allows the individual experts to specialize on smaller parts of a larger problem,
and it uses soft partitions of the data implemented by the gate. In the gen-
eral setup of MoE all experts are exposed to all the features and the goal is to



cluster the feature space and associate each cluster with an expert classifier in
an unsupervised manner. By contrast, in the MoV model there is a predefined
partitioning of the set of features according to the sensors used to measure them
and each expert is specialized in making decisions based solely on the features
of the corresponding sensor.

We next describe the training procedure. Assume we are given n feature
vectors x1, ..., xn with corresponding labels y1, ..., yn ∈ {1, ..., k}. Each input
vector xi is composed of m components x1i , ..., x

m
i collected from the m sensors.

The log-likelihood function of the model parameters is:

L(θ) =
∑
t

log p(yt|xt; θ) =
∑
t

log(
∑
i

p(i|xt; θg)p(yt|xit; θi)). (2)

To find the network parameters we can maximize the likelihood function
using the standard back-propagation algorithm. It can be easily verified that
the back-propagation equation for the parameter set of the i-th expert is:

∂L

∂θi
=

n∑
t=1

wti ·
∂

∂θi
log p(yt|xit; θi) (3)

such that wti is the posterior distribution of the gating decision:

wti = p(i|xt, yt; θ) =
p(yt|xit; θi)p(i|xt; θg)

p(yt|xt; θ)
. (4)

In a similar way, the back-propagation equation for the parameter set of the
gating network is:

∂L

∂θg
=

n∑
t=1

m∑
i=1

wti ·
∂

∂θg
log p(i|xt; θg). (5)

The likelihood score (2) is focused on the performance of the compound net-
work. It does not, however, explicitly encourage each view-level network to obtain
the optimal decision based on features of the corresponding view. One strategy
to overcome this issue is to train initially each view-level network separately and
then to use the learned parameters as initial values for the compound network.
We have found that this approach, which is based on injecting information to
the system via parameter initialization, does not work well since the network
tends to forget its initialization after a few training iterations. Rather, we use a
modified likelihood score:

L(θ) + λ
∑
i

Li(θi) (6)

such that L(θ) is the usual likelihood score (2) and Li(θi) =
∑

t log p(yt|xit; θi)
is the likelihood score where we only use the network corresponding to the i-th
view for classification. The parameter λ controls the relative importance of the
view-level and integrated decisions and can be tuned using cross-validation.



3 Multi-view Classification of Breast Microcalcifications

In this section we demonstrate the MoV method in the task of classifying breast
microcalcifications as benign or malignant, based on two mammography views.
A screening mammographic examination usually consists of four images, corre-
sponding to each breast scanned in two views: the mediolateral oblique (MLO)
view and the craniocaudal (CC) view. The MLO projection is taken in a 45◦ an-
gle and shows part of the pectoral muscle. The CC projection is a top-down view
of the breast. Both views are included in the diagnostic procedure. When reading
mammograms, radiologists judge whether or not a malignant lesion is present by
examining both views and breasts. In an expert diagnosis procedure, the expert
looks at each of the views separately, and delivers one final assessment.

Fig. 2: MoV network architecture for multi-view classification of breast micro-
calcifications.

We next apply the MoV method presented above for classification of breast
microcalcifications as benign or malignant. In this task, let {xcc, xmlo} denote
the extracted features from the CC and MLO views, respectively. The MoV
network for this task is:

p(c|x; θ) =
∑

i∈{cc,mlo}

p(i|xcc ◦ xmlo; θg)p(c|xi; θi) (7)

such that c is either benign or malignant. The network is illustrated in Fig. 2.
In the next section we show empirically that the MoV network yields better
classification results than networks that are based on a single view and better
results than other strategies that combine information from the two views.

4 Experimental Setup

Dataset and features. The empirical evaluation was based on the DDSM
dataset [3] which provides a high number of annotated mammograms with a



biopsy-proven diagnosis. We extracted ROIs that contained clusters of MCs for
which a proven pathology had been found. In real-life diagnosis procedures,
radiologists pay attention to the density of the breast, which can be a good
predictor of a woman’s breast cancer risk. We assumed that categorizing the
mammograms based on their density was necessary to compare the different
features and classifiers in a more objective way. We separated the mammograms
into two different tissue-density categories and studied them individually: fatty
tissues (ratings 1 and 2), and dense tissues (ratings 3 and 4). We considered
classifying the fatty and dense breast densities as two separate tasks. The density
type for each case was a parameter supplied by an expert as part of the DDSM.
We chose patients in the DDSM dataset that had both CC and MLO views to
test our model. Our dataset was comprised of 1410 clusters (705 of CC, and 705
of MLO), of which 372 were benign and 333 were malignant.

Feature vectors xcc and xmlo were extracted from the CC and MLO views,
respectively. Following [1], texture features were extracted from the Curvelet
coefficients at intermediate scales (in our study, two scales), and included the
four features mentioned in [9] for each scale, with three additional features:
entropy, skewness and kurtosis. Overall, each extracted ROI was represented by
14 features.

Training procedure. We used a 10-fold cross validation setup. In this setup,
there is complete isolation of the test set from the train set. Each fold was
only used for testing and never for training. We thus ensured that no bias was
introduced. In addition, 10% from each training set was used as a validation set
in order to optimize the model hyper-parameters, according to the mean results
on the validation sets. Using the features described in the previous section, the
size of the input feature set is 28 (14 features for each view). The features of
each view were inserted into the expert NN. In addition, all the features were
inserted into the gate NN, to receive the weights for the experts‘ predictions.
The expert NN has 2 hidden layers comprised of 24 neurons each. The gate NN
has 2 hidden layers, comprised of 3 neurons each. We used ReLU non-linear
activations between the layers and dropout with parameter 0.5. We used Eq.
(6) as a target function for optimization where λ = 1 gave the best results. The
objective function was maximized using the Adam optimizer [5]. The network
trained over 500 epochs with reduction of the learning rate on the loss plateau
and early stopping.

Table 1: Classification results (benign vs. malignant) for fatty (left) and dense
(right) breast tissues.

Method Accuracy F-measure AUC

CC 0.704 0.630 0.695

MLO 0.698 0.583 0.682

Avg [1] [8] 0.709 0.620 0.699

concat [6] 0.718 0.624 0.704

MoV 0.718 0.632 0.708

Method Accuracy F-measure AUC

CC 0.643 0.580 0.639

MLO 0.629 0.520 0.622

Avg [1] [8] 0.646 0.573 0.641

Concat [6] 0.642 0.568 0.637

MoV 0.665 0.596 0.661



Fig. 3: ROC curves for the fatty (left) and dense (right) tissues.

Experimental evaluation. We compared the MoV method to several mod-
els: a network based on the single-view (CC or MLO) features as input, and a
network that averages the decisions based on CC and MLO [1] [8]. This model
can be viewed as a degenerated version of MoV where the data-driven gating
network is replaced by a simple averaging. We denote this model as Avg. We
also implemented a network that concatenates CC and MLO features as input,
as in [6], denoted as Concat.

We optimized each model’s hyper-parameters using a validation set, to con-
duct a fair comparison. We used Receiver Operator Characteristic (ROC) curves
with accuracy, Area Under Curve (AUC) and F-measure metrics to evaluate
the algorithms’ performance. Due to the differences in nature between the two
types of breast tissue (Fatty/Dense), a different network architecture was trained
for each type, and therefore each breast tissue category was evaluated sepa-
rately. Table 1 shows the classification results for the two types of breast tissue
(Fatty/Dense), and Fig. 3 shows the corresponding ROC curves. The results are
the 10-fold test set classification average, computed over several experiments.
As can be seen from the tables, using the MoV method yielded the best results
over the dense samples in all metrics and over the fatty samples, had the best
results on the F-measure and AUC and had the best accuracy on a par with the
Concat network.

We performed DeLong test [2] comparing the MoV model paired with each
of the baseline models. The input to the DeLong test consisted of predictions
from the 10-fold cross validation with the corresponding labels. The DeLong test
examined the null hypothesis that both methods have the same AUC. On the
dense data, all the hypotheses were successfully rejected with p-value < 0.05.
On the fatty data we have not seen significance in the results. We assume it is
because the fatty data has half of the size of the dense dataset.



To conclude, in this study we addressed the problem of fusing several data
sources for a classification task. We proposed a network architecture that is ex-
plicitly aware that the input data are provided by multiple sensors. We demon-
strated the performance of the MoV method on the classification of breast mi-
crocalcifications into benign and malignant given multi-view mammograms. We
showed that the MoV architecture yields improved performance. In the algo-
rithm presentation we focused on the a two-view mammography, namely CC
and MLO. Our method, however, can be easily extended to mammography with
more than two views. In addition, the ROI features could be extracted automat-
ically using transfer learning methods. In the future we plan to investigate the
applicability of the method to other medical imaging tasks with multiple views
and/or multiple scans.
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