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ABSTRACT

We present a voxel-wise Bayesian multi-compartment T2
relaxometry fitting method based on Hamiltonian Markov
Chain Monte Carlo (HMCMC) sampling. The T2 spec-
trum is modeled as a mixture of truncated Gaussian com-
ponents, which involves the estimation of parameters in a
completely data-driven and voxel-based fashion, i.e. with-
out fixing any parameters or imposing spatial regularization.
We estimate each parameter as the expectation of the corre-
sponding marginal distribution drawn from the joint posterior
obtained with Hamiltonian sampling. We validate our scheme
on synthetic and ex vivo data for which histology is available.
We show that the proposed method enables a more robust pa-
rameter estimation than a state of the art point estimate based
on differential evolution. Moreover, the proposed HMCMC-
based myelin water fraction calculation reveals high spatial
correlation with the histological counterpart.

Index Terms— truncated-gaussian, myelin, validation,
variable-projection, MRI, MCMC

1. INTRODUCTION

Multi Echo T2 experiments [1] in Magnetic Resonance Imag-
ing (MRI) allow measuring a signal, for each voxel, that is the
superposition of the contributions of different microstructural
water compartments, such as myelin, the combination of intra
and extra axonal space (IE), and cerebrospinal fluid (CSF) [2].
The signal amplitude is measured at varying echo times, TE,
producing a characteristic decay due to the different trans-
verse relaxation times, T2, of the different water pools. Typ-
ically, to disentangle the different compartment contributions
– such as the myelin water fraction (MWF) – the signal is rep-
resented as a sum of decaying exponentials weighted by the
corresponding water volume fractions of each compartment
[2, 3]. Accurate and robust disentangling is important, for
example, because an accurate measure of MWF can be used
to assess neurological damage and disease [3]. However, this
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model assumes that each compartment has a single, well de-
fined T2, an assumption made to simplify the modeling so as
not to consider the heterogeneity of the tissue. We propose
to characterize T2 decay with a multi-compartment model
that accounts for a distribution of T2 values within each com-
partment through truncated Gaussian distributions. To obtain
the tissue parameters, we use a Hamiltonian Markov Chain
Monte Carlo (HMCMC) sampler [4] called the No U Turn
sampler (NUTS) [5] within a Bayesian framework. This, al-
lows us to easily incorporate prior knowledge and constraints
concerning the tissue parameters as well as to account for the
noise in the data. Further, instead of simply obtaining best fit
parameters, we obtain probability distributions for each pa-
rameter, allowing us to quantitatively examine the level of sta-
bility and uncertainty in the parameter estimates. Using HM-
CMC rather than conventional samplers, such as Metropolis
[6] or Gibbs [7], allows us to use fewer samples with greater
inferential power due to the use of Hamiltonian dynamics.
There are a few prior attempts to use MCMC for parame-
ter estimation in MRI, particularly diffusion MRI [8, 9, 10],
which are focused on modifications to Metropolis or Gibbs
samplers. Our choice is motivated by the fact that as the num-
ber of parameters in a model or the complexity of the model
increases, point estimates like maximum likelihood or maxi-
mum a posteriori can become increasingly ill-suited for infer-
ence due to, for example, the phenomenon of the concentra-
tion of measure [4]. This may in part contribute to the insta-
bility and inaccuracy of estimating all parameters of complex
relaxometry models in traditional approaches [11]. We show
that in synthetic and in real data, estimates coming from tak-
ing the means of the marginal posterior distributions provided
by HMCMC are more robust than a state of the art point es-
timate. Furthermore, a comparison of the MWF calculated
with our method with respect to histological myelin measure-
ments reveals a high spatial correlation.

2. MODELING

A recent approach [12] uses a gamma distribution for each
compartment to model the T2 distribution and fits parameters



through a least squares fitting using variable projection; how-
ever, all except one of the means and standard deviations of
the T2 distributions are fixed to values coming from the lit-
erature in order to avoid instability in the fitting. In another
recent approach [13], authors use a Gaussian distribution to
characterize each compartment and also estimate all volume
and T2 parameters; the authors resort to a multi-voxel least
squares approach with spatial regularization in order to ob-
tain a stable fitting. Since physically there are clear lower and
upper bounds on the T2 due to non-negativity and the chem-
ical properties of water, we propose to use a truncated Gaus-
sian distribution to describe the myelin and IE compartments;
we note that [13] shows that a variety of distributions such
as the normal and gamma distributions produce the same de-
cay curve given a fixed mean and standard deviation. Due to
the homogeneity of CSF, we expect it to have a very narrow
T2 distribution which we represent with a delta function [3].
Hence, we model the voxel signal at echo time TEi as

S(TEi) =(vmye

∫ ∞
0

exp(−TEi

T2
)TG (T2, µmye, σmye) dT2

+ vIE
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where TG is the truncated Gaussian distribution, M0 is the
proton density, vi are the water fractions , µi, σi are the
means, and standard deviations of the T2 distribution of the
ith compartment, and T csf

2 is the decay constant of CSF.
Thus, the parameters of the model to be estimated are

x = (vmye, vIE , vcsf , µmye, σmye, µIE , σIE , T
csf
2 ,M0).

(2)

3. PARAMETER FITTING

For each voxel, we have a signal acquired at N = 32
equally spaced echo times, from 10ms to 320ms. We use
a voxel-wise Bayesian approach where, denoting the param-
eters of the model as x and the signal data of a voxel as
s = {s1, . . . , sN}, we have

p(x|s) ∝ p(s|x)p(x) (3)

where we omit a normalization constant depending on s.
Given a set of parameters x, we model si as arising from
the model evaluated at (x, TEi) with additive white Gaussian
noise such that

si ∼ N (Model(TEi,x), σ
2) (4)

where σ is the noise standard deviation estimated [14] from
the image in real data, or set in synthetic data. Due to the as-

sumption of independence, we have that the likelihood func-
tion satisfies

p(s|x) =
N∏
i=1

1√
2πσ2

exp(
(si −Model(TEi,x))

2

2σ2
). (5)

Since the volume fractions must sum to one, we use an unin-
formative, three dimensional, symmetric Dirichlet prior

(vmye, voth, vcsf ) ∼ Dir(1.0, 1.0, 1.0). (6)

For the other parameters, we use uniformly distributed pri-
ors supported on intervals which correspond to reasonable
bounds for the parameters taken from literature values [3]
while considering ex vivo data:

TCSF
2 ∼ U([200ms, 500ms]), M0 ∼ U([0.95, 1.05])
µmye ∼ U([1ms, 50ms]), σmye ∼ U([1ms, 20ms])
µIE ∼ U([50ms, 200ms]), σIE ∼ U([1ms, 60ms]).

Note that we normalize the signal using a proton density es-
timated with a previous NNLS fit [2]; M0 is thus a factor
which corrects for mis-estimation of this parameter in the
model. Given the likelihood and the priors, HMCMC ap-
proximates the whole posterior and marginal posterior distri-
butions through sampling of the support of these distributions
by following the trajectories of points under the following dy-
namical system:

dx

dt
=
∂H

∂l
(7)

dl

dt
=
−∂H
∂x

(8)

where H is a function constructed from the likelihood and
the priors, x represents the parameters as variables, and l is a
set of auxiliary variables which are not used in terms of the
sampling. In practice, this system is integrated numerically
using a leapfrog scheme [5]. We run the sampler for 10,000
samples, 5000 samples for burn-in to help the sampler reach
convergence, and 5000 samples used for inference. We then
obtain best fit parameters through an expectation:

x∗ =

∫
xp(x|s)dx, (9)

which we calculate through the standard sample approxima-
tion. We note that as the number of parameters increases,
this expectation rarely is similar to the maximum a posteri-
ori estimate or other point estimates obtained from traditional
fitting methods. A readable but comprehensive overview of
HMCMC as well the pitfalls of using traditional methods is
available in [4]. To initialize the HMCMC sampler, we use
Automatic Differentiation Variational Inference(ADVI) [15],
where instead of sampling the posterior, the parameters of a
tractable distribution are fit to match the posterior. We use



(a) Myelin (b) IE

Fig. 1: Relative errors from ground truth for MWF and IEWF
calculated using HMCMC and MIX. Note the significantly
higher variance of errors in MIX as compared to HMCMC.

the open source probabilistic programming library PyMC3
[16] in Python to carry out the HMCMC fitting. To com-
pare, we also fit parameters using an in-house implementation
of variable projection [17] called MIX [18] which solves the
standard least squares minimization problem using an initial
guess generated from solving reduced problems using differ-
ential evolution and convex optimization, resulting in a point
estimate. We used the same bounds on the parameters in MIX
as in the HMCMC fitting.

4. EXPERIMENTS AND RESULTS
We applied HMCMC and MIX to both synthetic and ex vivo
spinal cord data with histology [19]. The estimated SNR of
the real data acquisition was 500; hence, we generated the
synthetic data from the model discussed in the previous sec-
tion with additive zero mean Gaussian noise in order to match
this SNR. We fix the T2 values of the myelin, IE, and CSF
compartments, while varying myelin and IE volume fractions.
For each volume fraction set, we generate 100 realizations
of zero mean Gaussian noise and add it to the synthetic sig-
nal. In particular, the simulated parameters are TCSF

2 =
0.3s,M0 = 1.0, µmye = 0.02s, σmye = 0.005s, µIE =
0.1s, σIE = 0.01s, vmye ∈ {0.3, 0.4, 0.5, 0.6}, vCSF =
0.05, vIE ∈ {0.65, 0.55, 0.45, 0.35}. In Fig. 1, for each
ground truth myelin and IE volume, we took the absolute
error between the predicted volumes and the ground truth,
divided by the ground truth, and plotted the corresponding
boxplot which accounts for 100 noisy repetitions. We can
see that the variance of the relative errors of MIX estimates
is much larger than that of HMCMC for myelin and IE over
all ground truth volumes. In addition, MIX had more outliers
with large error values. Further, in general, the median and
mean relative errors of HMCMC is equal to or lower than that
of MIX.

Regarding the real data, in Fig. 4 we plot the volumes cal-
culated from histology versus the predicted volumes from the
different fitting procedures voxelwise. We calculate the Pear-
son correlation coefficients for each method and also show a
Bland-Altman plot in Fig. 2 and Fig. 3. The table also re-
ports the correlation coefficients from a standard parameter

Fig. 2: Bland-Altman Plot
showing the clear differ-
ence between the methods.

In WM In Tot.
HMCMC 0.45 0.79
MIX 0.08 0.67
Standard [20] 0.2 0.72

Fig. 3: Pearson Correla-
tion to Histology. Note that
HMCMC significantly out-
performs the other methods
in white matter.

fitting previously done on the same dataset [20] with differ-
ent modeling. In Fig 5 we show some parameter maps from
HMCMC. Moreover, in Fig. 6 we show the marginal distri-
butions of the volumes from HMCMC for two representative
voxels selected randomly in white and gray matter. We use
cocor [21] to do a statistical comparison of the correlation
coefficients of MIX and HMCMC and find that the null hy-
pothesis of the coefficients being the same can be rejected at a
95 percent confidence level using a variety of statistical tests.
Further, we can see from the Bland-Altman plot that the two
methods clearly differ significantly, indicating a fundamental
difference in prediction quality.

5. DISCUSSION

From the results, we can see that using a voxel-wise approach,
even at a fairly high SNR, volume point estimates are much
less robust to noise and less accurate than distributional es-
timates, in both synthetic and real data. HMCMC provides
robust parameter estimates, allowing for better performance
on synthetic data, Fig. 1, high spatial correlation with histol-
ogy for myelin water fraction estimates, Fig. 4b, and smooth
parameter maps, Fig. 5. As for future perspectives, we note
that in our model we do not account for imperfect rephasing
of nuclear spins in the MRI acquisition [22] which leads to
the signal decay not being perfectly exponential. This can
have a significant impact on the fitting, particularly if the sig-
nal at low TE are affected. This phenomenon might in part
explain the performance of MIX on real data, since the global
optimum of the squared differences might change due to the
model inconsistency; we conjecture that our method is more
robust to model inconsistency since it computes posterior dis-
tributions and uses averaging to obtain the estimates. Further,
we omitted discussing the statistical properties of HMCMC
such as convergence and optimal sample numbers as well as
tunable parameters of the NUTS sampler and statistical val-
idation of sampling. In addition, while HMCMC provides
more robust estimates, it requires much more computational
time compared to MIX or other point estimators. However,
using parallel CPU processing on clusters and GPU based
MCMC sampling, this problem can be mitigated. We em-



(a) White matter (b) White and Gray matter

Fig. 4: Voxelwise plots of predicted Myelin Water Fraction
(MWF) for HMCMC (Green) and MIX (Red) vs. Histologi-
cal Myelin Volume Fraction (MVF). HMCMC provides a bet-
ter spatial correlation to histology, more precise MWF esti-
mates, and a plausible linear trend with respect to histology.

phasize that the parameters of Dirichlet prior were chosen to
be weakly informative i.e. to encode the sum constraint and
to not favor low or high volumes for each compartment; tun-
ing of these parameters based on prior estimates of the ranges
of water fractions seen for each compartment could lead to
better results. Further, while we use an ADVI initialization,
there are many other initialization strategies one can use; for
instance, one could also run HMCMC on a simpler model
and use those results to initialize the complex model used
in this work. Finally, we note that modifying the Bayesian
approach to incorporate spatial regularization and/or a multi-
voxel approach and using HMCMC could also stabilize the
fitting even further.

6. CONCLUSION

We proposed a T2 relaxometry model which takes into ac-
count heterogeneity of T2 decay within compartments by
modeling distributions of T2 for each compartment using
truncated Gaussian distributions. We proposed to fit this
complex model’s parameters to synthetic and real data using
a voxel-wise Bayesian approach and Hamiltonian MCMC
sampling. To the best of our knowledge, it is the first time

(a) Myelin WF. (b) IE WF.

(c) CSF WF. (d) Mean Myelin T2.

(e) Mean IE T2. (f) CSF T2.

Fig. 5: Water Fraction and T2 Maps obtained from HMCMC.

that such a framework has been used for Multi Echo T2 re-
laxometry, enabling the fitting of all the parameters of the
model without resorting to spatial regularization or multi-
voxel methods. We validated our method on synthetic and
real data and compared it to a state of the art point estimate,
finding that the use of HMCMC yields more robust and ac-
curate estimates of water fractions, with significantly better
correlations to histology.
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Fig. 6: Sample volume fraction distributions from HMCMC
in a WM and GM voxel
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