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ABSTRACT

Convolutional neural networks (CNNs) for biomedical im-
age analysis are often of very large size, resulting in high
memory requirement and high latency of operations. Search-
ing for an acceptable compressed representation of the base
CNN for a specific imaging application typically involves a
series of time-consuming training/validation experiments to
achieve a good compromise between network size and ac-
curacy. To address this challenge, we propose CC-Net, a
new image complexity-guided CNN compression scheme for
biomedical image segmentation. Given a CNN model, CC-
Net predicts the final accuracy of networks of different sizes
based on the average image complexity computed from the
training data. It then selects a multiplicative factor for pro-
ducing a desired network with acceptable network accuracy
and size. Experiments show that CC-Net is effective for gen-
erating compressed segmentation networks, retaining up to
~ 95% of the base network segmentation accuracy and uti-
lizing only ~ 0.1% of trainable parameters of the full-sized
networks in the best case.

Index Terms— Biomedical image segmentation, Deep
neural networks, Network compression, Image complexity

1. INTRODUCTION

CNN s are often of very large size, resulting in high memory
requirement and high latency of operations, and thus not suit-
able for resource-constrained applications (e.g., edge comput-
ing). To find a good compromise between network size and
performance, a series of time-consuming training/validation
experiments is often used for a specific imaging application.
To address this challenge, we propose a new network com-
pression scheme targeting biomedical image segmentation
in resource-constrained application settings (e.g., low cost
and easy-to-carry imaging devices for disaster/emergency
response and military rescue).

Since the inception of FCNs [1]], various improved seg-
mentation networks [2 13,4, 5] were developed. To compress
CNNs, various pre-training [6} 7] and post-training compres-
sion [8} 9] schemes were suggested. In these techniques, com-
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pression thresholds often need to be set manually in multiple
pruning iterations.

In contrast with natural scene images, in biomedical or
healthcare application settings, images are often for a spe-
cific type of disease/injury and captured by specific imaging
devices; hence, their objects and settings are quite “stable”,
making the image characteristics and complexity much more
specific to analyze. In this paper, we leverage this observation
to introduce CC-Net.

Based on the image complexity measure, target CNN, and
user constraints (e.g., desired accuracy or available memory),
CC-Net determines for the given dataset the most suitable
multiplicative factor to compress the original CNN. The
resulting compressed network is then trained, with much
less effort and memory compared to the original network.
Experiments using 5 public and 2 in-house datasets and 3
commonly-used CNN segmentation models as representa-
tive networks show that CC-Net is effective for compressing
segmentation networks, retaining up to ~ 95% of the base
network segmentation accuracy and utilizing only ~ 0.1%
of trainable parameters of the full-sized networks in the best
case.

2. METHODOLOGY

Feature-map (filter output) energy is a good indicator of fil-
ter’s feature extraction capability. We have conducted a large
set of experiments to study the relationship between feature-
map energy and training datasets. Fig. [T] depicts 3 example
energy distribution for the first convolution layer of U-Net [2].
One can observe that (i) a significant number of filter outputs
have very low energy, and (ii) less “complex” (to be defined
more precisely later) datasets have more low-energy filter out-
puts. These suggest that U-Net [2] may be unnecessarily large
for some biomedical datasets, and in these cases, filters can be
pruned without significantly deteriorating the accuracy.

Based on above observations, we develop CC-Net, de-
picted in Fig. 2] Inputs and internal operations of CC-Net are
shown in parallelograms and rectangles. Existing architec-
tures are the 3 CNNs studied and parameterized in our work.
Colored boxes highlights the key contributions of this paper.
We elaborate the major components in CC-Net below.
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Fig. 1. Feature map energy distributions of the first convo-
lutional layer of U-Net for several datasets: (left) gland im-
ages (high complexity), (middle) C2DH-HeLa cell images,
and (right) wing-disk images (low complexity).
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Fig. 2. Our proposed scheme for CC-Net.
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2.1. Image Complexity Computation

We seek an image complexity metric that can (i) indicate the
trends of segmentation accuracy and (ii) be easily computed.
Our work examined the following candidate metrics: (i) sig-
nal energy, (ii) edge information (Sobel and Scharr filters
along with image pyramid), (iii) local key-point detection us-
ing SURF [10], (iv) visual clutter information [11], (v) JPEG
complexity [12] and (vi) blob density. To obtain a single
complexity value for an entire dataset, we take the average of
complexity values over all the images in the dataset.

Table 1. Datasets and properties.

Dataset Size Type J B Source
Glands (GL) 165 RGB 0.2401 0.5711 [13]
Lymph Nodes (LN) 74 Ultrasound 0.2445 0.0715 in-house
Melanoma (ME) 2750  RGB 0.1505 0.3055 [14]

C2DH-HeLa (CH) 20 Gray
Wing Discs (WD) 996 Gray
C2DH-U373 (CU) 34 Gray
C2DL-PSC (CP) 4 Gray

0.1403  0.4607 [I3]
0.0925 0.1348 in-house
0.1473 0.0699 [I3]
0.2296 0.3066 [13]

Out of 7 datasets shown in Table.[T] 5 datasets (train-set,
top 5 rows) are used to formulate the methodology, while
the remaining 2 datasets (test-set) are used for blind evalu-
ation. Fig. @] plots average complexities (normalized to the
range [0,1]) against the train-set datasets arranged as their
F1 and IU score degradation (two most popular segmentation
accuracy metrics). Among these complexity measures, the
JPEG complexity better follows the trend of F1 score degra-
dation (i.e., higher complexity leads to lower F1). Since IU
is related to both feature variety and quantity, to represent it,
we linearly combine the JPEG complexity J and blob den-
sity B(B = Y, fg-pixel/ Y, img_pixel, see Table ), as
JB = wJ + (1 —w)B, where w is a value in [0, 1]. The value
of w is determined by inspecting the optimal regression fitting
on the training datasets in our experiments. We consider J and
JB for multiplier determination explained as follows.

Fig. 3. CNN architectures. A colorless block represents a
group of convolution, batch normalization, and ReLU. A red
block and a green block represent pooling and up-scaling op-
erations, respectively.

2.2. Multiplier Determination and Network Compression

Keeping all other variables unchanged, we can express the re-
lationship between the segmentation accuracy (A) and data
complexity (C) as A = f(0,C), where 6 is the number of
trainable parameters in a CNN. For general networks, the
function f(6,C) can be rather complicate. But in general,
segmentation accuracy is monotonically non-decreasing with
respect to 6 and C, i.e., % > (0 and % > 0.

For CNNss (see Fig. [3), we observe (as discussed in Sec-
tion 3) that %’;0 can be approximated by a linear function of

C. That is, %’;9 ~ AC + 0 for a constant A that reflects the
degree of degradation. Given the linear dependency, if A and
0 are known, then it is straightforward to compute the change
in accuracy or in the number of parameters, when the other is
provided. The value of A is network-dependent, and can be
obtained by performing systematic analysis on network com-
pression and tracking the change in accuracy.

A simple way of compression is to uniformly scale down
the number of feature maps in every convolution layer using
a single multiplier (« € (0, 1]). Existing work has shown that
it performs very well [7, [16]]. The number of trainable pa-
rameters after scaling becomes 0* = aFM; xFX x FY x
aF M, ;, where F'M; and F' M, are the numbers of input
and output feature maps, and F;X and F}¥ are filter dimen-
sions. However, finding a good « is challenging. We employ
complexity measures to determine c.

When producing compressed networks, we consider two
practical scenarios: (1) memory-constrained best possible ac-
curacy, and (2) accuracy-guided least memory usage. For (1),
two sub-cases are: (1.a) disk space budget and (1.b) main
memory budget. For case (1.a), given a disk space budget
in MB, we first determine 6*, based on the number of bits for
%*. For
case (1.b), sizes of feature-maps are considered along with the
number of bits for 8*, and the value of « can be determined as
o= %. For (2), given the lowest acceptable accuracy A,,in,
and the original base network accuracy A,,4, using the linear
model, Aprg— Amin = (AC'+0)(log 6 —log 6*), * and so as
a can be readily computed. Using «, a compressed network
is produced, which then can be trained.

each parameter. Then « can be computed as o =
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Fig. 4. Mapping image complexity with accuracy degradation. (left) Our datasets are arranged in increasing order of drop in
F1 score; (right) our datasets are arranged in increasing order of drop in IU score.

Fig. 5. Some C2DH-U373 (top row) & C2DL-PSC (bottom row) segmentation output. (a) Input images, (b) ground truth, the
segmentation output of (c) U-net, (d) CC-U-Net, (e) U-Net + [9], (f) CC-U-Net + [9]], (g) U-Net + [6], and (h) CC-U-Net + [6].

3. EXPERIMENTAL EVALUATION

5 train-set datasets (Glands, Lymph Nodes, Melanoma,
C2DH-HeLa, Wing Discs) are used to determine 8(19012 ]
for 3 CNN models (Fig. B), which is then mapped to J
& JB to determine A. For simple calculations maintain-
ing integer filter values, « € {1,0.75,0.5,0.25, 0.1875,
0.125,0.0625,0.03125}, are considered (Fig. [6] & Fig.[7] (a),
(c) X-axis). 2 test-set datasets (C2DH-U373, C2DL-PSC)
are used to validate our method. We use a standard back-
propagation implementing Adam (learning rate = 0.00005)
and cross entropy as loss function using data augmentation.
Experiments are performed on NVIDIA-TITAN and Tesla
P100 GPUs, using the Torch framework.

Fig. 5] shows some segmentation output. Fig. [6] and
show the calculated degree of degradation (\) for FCN [1]],
U-Net [2], and CUMedVision [3]] networks. In these figures,
(a) and (c) give the degradation in the relative F1 and IU ac-
curacy (i.e., A‘gcciz;*l) with respect to changes in the number of
parameters expressed in logarithmic values. The slopes of re-
gression lines for each dataset in (a) and (c) are plotted against
the respective complexities in (b) and (d).

Test case 1 (accuracy-guided least memory usage).
We consider an example constraint of Fleompressed =
95% F1pese. The Alogf is estimated using A and § and
complexity (Table[T). Using the ceiling « values, compressed
networks are trained and analyzed. As shown in Table 2] a
significant compression is achieved (best 113x for C2DH-
U373 on U-net and least 3.5x for C2DL-PSC on CUMed)
with much better accuracy compared to compression achieved
using only [6] or [9]. To validate the effectiveness in estimat-
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Fig. 6. Calculated degree of degradation (\) for the FCN ar-
chitecture. F1 (Ap; = 0.407 and 67 = —0.030) and TU
()\IU = 0.627 and 6IU = —0070)

ing o, we introduce a small reduction in « value (e = 6—14,
smallest possible keeping integer filters); the accuracy de-
grades below 95% (Table |2, row CC-Net-casel-¢). CC-Net
compression does not show much improvement when pruned
further, indicating few remaining ineffective filters.

Test case 2 (memory-constrained best possible accu-
racy). We consider a disk space budget of 1 MB. Using ceil-
ing of @« = 4/6*/6, compressed networks are produced as
shown in Table [2} whose accuracy satisfies the accuracy pre-
diction made by our method (Fig. [g).

The overall reduction (R = %) in trainable pa-
compresse

rameters (PR) and evaluation latency (LR) for all 7 datasets
(for test case 1) is plotted in Fig. 0] Larger complexity re-
sults in less compression, indicating a higher requirement in
trainable parameters for extracting features. CC-Net achieves
parameter and latency reduction in the range of 1000z to 2x
and 17z to 1.5z for different datasets.
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Fig. 7. Calculated degree of degradation ()\). U-Net (left): F1 (Ap; = 0.411 and §p; = —0.037) and IU (A\;y = 0.323 and
dru = —0.031); CUMedVision (right): F1 (Ap; = 0.701 and 61 = —0.071) and IU (A\;y = 1.010 and §;; = —0.129).

Table 2. Segmentation accuracy and network parameters on the C2DH-U373 and C2DL-PSC datasets.

U-Net [2] CUMedVision [3] FCN 1]

Method Dataset F1 U log(#P) F1 U log(#P) F1 U log(#P)
C2DH-U373 | 0.896 | 0.900 0.891 | 0.895 0.891 | 0.894

Base Network copL-PSC | 0801 | 0820 | 7492 || 0793 | o814 | %7 | o755 | o788 | T2
Base Newwork + Squeere 61 | ‘00 | 0552 | oget | 749 || 091 | on1 | 6%° || oo | o7 | 73
Base Network + Prune (9] | C2DH-U373 | 0858 | 0867 | 7491 || 0848 | 0861 | 6886 | 0809 | 0837 | 7551
Z : C2DL-PSC | 0749 | 0785 | 7491 || 0.744 | 0768 | 6.886 || 0.691 | 0.738 | 7.552
S CC-Net-casel C2DH-U373 | 0.863 | 0.890 | 5.436 || 0.868 | 0.866 | 5378 | 0.880 | 0.885 | 5.939
3 C2DL-PSC | 0775 | 0.818 | 6.640 || 0763 | 0.794 | 6.341 || 0.720 | 0.766 | 6.949
z CC-Netcasel + Saueese | CZDH-U3T3 | 0806 | 0840 | 5243 || 0820 | 0853 | 5245 | 0824 | 0860 | 5915
2 q C2DL-PSC | 0.681 | 0735 | 6.197 || 0.629 | 0705 | 6.176 || 0.663 | 0.728 | 6.786
§_ CC-Net-case] + Prune C2DH-U373 | 0.834 | 0.847 | 5435 || 0.834 | 0847 | 5377 || 0830 | 0.843 | 5.938
g C2DL-PSC | 0772 | 0800 | 6.639 || 0.750 | 0786 | 6341 || 0.678 | 0.730 | 6.949
S CC-Netcaselc C2DH-U373 | 0.841 | 0872 | 5277 || 0816 | 0.849 | 5297 || 0.817 | 0.844 | 5.847
C2DL-PSC | 0751 | 0781 | 6.603 || 0.759 | 0785 | 6315 || 0713 | 0742 | 6.922
CC-Net.case2 C2DH-U373 | 0.832 | 0.863 | 5.007 || 0.807 | 0.837 | 5.097 || 0.803 | 0.834 | 5.097
C2DL-PSC | 0.698 | 0745 | 5.097 || 0.711 | 0743 | 5007 || 0.644 | 0.719 | 5.097

Predicted-Case1 = Experimental-Case1 = Predicted-Case2 = Experimental-Case2

II || L.
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Fig. 8. Predicted (CC-Net) and experimental F1 scores for
test cases 1 (accuracy constraint) and 2 (memory constraint).

Table 3. Training time consideration (test case 1)

Approach Dataset Pre-training Training Post-training
C2DH-U373 10781 ms 160
U-Net+Bl - coprLpsc 2348 ms 30
Ours (new) C2DH-U373 o 4786 ms -
urs tnew C2DL-PSC 1282 ms -
Ours (existing) %22%}{_[;;? Negligible ?;Zg E: :

Table |§| shows training time for [9] and CC-Net on U-Net
for test case 1 (on P100 GPU). Per epoch training time (in ms)
is provided along with number of pruning epochs (column
Post-training). We have used fewer fine-tuning iterations per
pruning epoch, however, pruning is expensive and can exceed
original network training by a factor of 3 [8,[9]. One time A
determination (‘O’ in Table[3)) for any CNN is a bottleneck for
CC-Net. Yet, after this process, significant reduction in train-
ing time can be achieved for any dataset, trained on the same

Parameter reduction for datasets in log scale Latency reduction for datasets
~U-Net o CU-Net - FCN +U-Net « CU-Net - FCN
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Fig. 9. Trainable parameter and inference latency reduction
achieved (on test case 1) for various datasets, arranged along
the x-axis in increasing image complexity.

network. We consider ‘O’ can be computed under 2x training
time of base architecture, with a sufficient degree of accuracy,
using 2 datasets with two « points (« € {0.25,0.03125}.

4. CONCLUSIONS

In this paper, we presented a new image complexity-guided
network compression scheme, CC-Net, for biomedical im-
age segmentation. Instead of compressing CNNs after train-
ing, we focused on pre-training network size reduction, ex-
ploiting image complexity of the training data. Our method
is effective in quickly generating compressed networks with
target accuracy, outperforming state-of-the-art network com-
pression methods. Our scheme accommodates practical ap-
plied design constraints for compressing CNNs for biomedi-
cal image segmentation.
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