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Abstract

Brain imaging genetics use the imaging quantitative traits (QTs) as intermediate endophenotypes 

to identify the genetic basis of the brain structure, function and abnormality. The regression and 

canonical correlation analysis (CCA) coupled with sparsity regularization are widely used in 

imaging genetics. The regression only selects relevant features for predictors. SCCA overcomes 

this but is unsupervised and thus could not make use of the diagnosis information. We propose a 

novel method integrating regression and SCCA together to construct a supervised sparse bi-

multivariate learning model. The regression part plays a role of providing guidance for imaging 

QTs selection, and the SCCA part is focused on selecting relevant genetic markers and imaging 

QTs. We propose an efficient algorithm based on the alternative search method. Our method 

obtains better feature selection results than both regression and SCCA on both synthetic and real 

neuroimaging data. This demonstrates that our method is a promising bi-multivariate tool for brain 

imaging genetics.
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1. Introduction

Brain imaging genetics has grown rapidly during the past decade. It combines both genetics 

factors, e.g., the single nucleotide polymorphisms (SNPs), and imaging quantitative traits 

†Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed sto the design and implementation of ADNI and/br 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

1 CCC is the Pearson correlation coefficient calculated by ccc = u⊤X⊤Yv

u⊤X⊤Xu v⊤Y⊤Yv
 . For Lasso, the u and v are estimated via 

regressing SNPs and QTs to diagnosis status respectively.
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(QTs). Using imaging QTs as endophenotypes could improve the identification ability, and 

offer new opportunities to interpret the causality of relationships between genetic variations 

and brain structure, function and abnormality such as Alzheimer’s disease (AD) [1, 2].

In biomedical studies, the sparse regression techniques usually take genetic markers or 

imaging QTs as predictors, and the diagnosis status as responses for identifying diagnosis-

relevant biomarkers. They only select variables for predictors. Sparse canonical correlation 

analysis (SCCA) is one of the most popular bi-multivariate method in imaging genetics. The 

SCCA methods identify bi-multivariate associations between two or among more-than-two 

sets of variables [3, 4, 5, 6]. Unfortunately, SCCA is unsupervised method indicating that it 

cannot make use of the diagnosis status information. To construct the supervised SCCA, the 

three-way SCCA has been proposed. It maximizes pairwise correlations among SNPs, QTs 

and the diagnosis status. From the point of view of optimization, modeling this complexity 

relationship among three sets of variables could reduce the performance, since it requires 

those extracted SNPs are correlated to both imaging QTs and diagnosis information 

simultaneously.

In this study, we propose a novel method which combines SCCA and regression (sCCAR). 

In our method, the regression part plays a role of providing guidance for imaging QTs 

selection, while the SCCA part is focused on selecting relevant SNPs and imaging QTs. This 

modeling method is quite useful since it transforms the conventional SCCA to be guided by 

the diagnosis status. The alternating search method is employed to solve the sCCAR as it is 

bi-convex. Using both synthetic and real neuroimaging data, sCCAR obtains better or equal 

correlation coefficients, but holds better canonical weight profiles. This indicates that 

sCCAR outperforms both regression and SCCA, demonstrating it could be a promising bi-

multivariate tool for brain imaging genetics.

2. METHOD

We denote scalars as italic letters, column vectors as boldface lowercase letters, and matrices 

as boldface capitals.

2.1. IDENTIFYING RELEVANT QTs VIA SPARSE REGRESSION

In brain imaging genetics, let Y ∈ ℛn × q be the matrix of imaging QTs with n subjects and q 

QTs, and z be the diagnosis status, the regression model

min
v

1
2‖z − Yv‖2

2 + λv Ω (v) (1)

could reveal diagnosis-related QTs [7]. If Ω(v), is the 𝓁1 − norm, this model is the Lasso [8]. 

In addition, many functions are available such as group Lasso, graph laplacian etc.

2.2. IDENTIFYING BI-MULTIVARIATE CORRELATION VIA SCCA

SCCA is a popular bi-multivariate analysis technique in imaging genetics. We use 

X ∈ ℛn × p and Y ∈ ℛn × q to represent the the SNP data and imaging QT data, respectively, 
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where p is the number of SNPs. Let u ∈ ℛp × 1 and v ∈ ℛq × 1 be the canonical weights 

associated with X and Y. The SCCA model is defined as

min
u, v

− u⊤X⊤Yv + λu Ω (u) + λv Ω (v)

s . t . ‖Xu‖2
2 = ‖Yv‖2

2 = 1.
(2)

Ω (u) and Ω (v) are the penalty functions to promote sparsity. It is worth noting that Ω (u) and 

Ω (v) could be different functions to account for different sparsity patterns [3, 4, 5, 6].

2.3. THE PROPOSED METHOD

It is clear that the regression methods identify outcome-related imaging QTs which are 

supervised learning methods. On the contrary, SCCA methods do not require the diagnosis 

information and thus are unsupervised methods. In order to absorb merits from both 

regression and SCCA, we propose an integrated model, i.e. sCCAR, which is defined as

min
u, v

1
2‖z − Yv‖2

2 − u⊤X⊤Yv + λu Ω (u) + λv Ω (v)

s . t . ‖Xu‖2
2 = ‖Yv‖2

2 = 1 .
(3)

The merits of this model is as follows. First, the regression term is used to select the 

diagnosis status related imaging QTs. This is quite useful since it provides additional 

information to the SCCA part. Second, as the SCCA part is improved, the regression part 

could also be boosted. Therefore, the regression and SCCA promote each other mutually. 

For simplicity ‖Xu‖2
2 = ‖Yv‖2

2 = 1 is replaced by ‖u‖2
2 = ‖v‖2

2 = 1. This approximation usually 

produces good results for highdimensional problems [9, 10].

2.4. THE OPTIMIZATION ALGORITHM

The problem (3) is bi-convex in u and v so long as their penalties Ω (u) and Ω (v) are convex. 

This means that the alternating optimization method can be used. We first solve v with u 
fixed.

When u is fixed, the objective with respect to v becomes

min
u, v

1
2‖z − Yv‖2

2 − u⊤X⊤Yv + λv Ω (v), s . t . ‖v‖2
2 = 1. (4)

Then we have the following proposition.

Proposition 1 The solution of Eq. (4) is given by v* = v
‖v‖2

, where v is the solution of
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min
v

1
2‖z − Yv‖2

2 − u⊤X⊤Yv + λv Ω (v) . (5)

This proposition can be proved via the same method in [4] (Appendix A.2). In this paper, we 

use the 𝓁1 −-norm in the model, then Eq. (5) writes

min
v

1
2‖z − Yv‖2

2 − u⊤X⊤Yv + λv‖v‖1 . (6)

Eq. (6) is convex in v with u fixed. Based on the coordinate descent method [11], the 

solution to Eq. (6) is attained

v = S Y⊤z + Y⊤Xu, λv , (7)

where S(a, λ) = sign(a)( |a | − λ)+ is the soft-thresholding operator.

Algorithm 1

Integrated SCCA and Regression (sCCAR)

Require:

 X ∈ ℛn × p
, Y ∈ ℛn × q

, λu, λv

Ensure:

 Canonical weights u and v.

1: Initialize u ∈ ℛp × 1
 , v ∈ ℛq × 1

, and normalize ‖u‖2
2 = ‖v‖2

2 = 1 ;

2: while not convergence do

3:  Solve Eq. (5) according to Eq. (7);

4:  v* = v
‖v‖2

;

5:  Solve Eq. (8) according to Eq. (9);

6: end while

When v is solved, we can easily have the objective with respect to u

min
u

− u⊤X⊤Yv + λu‖u‖1, s . t . ‖u‖2
2 = 1. (8)

Then applying the Lagrange multiplier method and basic algebraic argument [4], we obtain 

the optimal solution

u* =
S X⊤Yv, λu

‖S X⊤Yv, λu ‖2
. (9)
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Following Eqs. (7) and (9), the optimization procedure is shown in Algorithm 1. In this 

algorithm, v and u are alternatively updated till convergence. Before running,λv and λu can 

be tuned using the cross-validation or holdout method.

3. EXPERIMENTAL RESULTS

We compare sCCAR with SCCA [4] and Lasso [8]. For consistency, both sCCAR and 

SCCA use the 𝓁1 -norm penalty. The parameters are tuned via nested 5-fold cross-

validation. Specifically,λu and λv are searched from [0.01 : 0.02 : 0.5] ([0.01: 0.02 : 0.99] for 

Lasso) where the result goes from less-sparsified to over-sparsified. After that, the final 

training and testing results are obtained during the external loop.

3.1. RESULTS ON SYNTHETIC DATA

We use four synthetic data sets containing different levels of noise. First, we setup two 

sparse vectors v ∈ ℛ120 × 1 and u ∈ ℛ100 × 1 and a latent vector z ∈ ℛ60 × 1. Then Y is 

generated by yi N ziv, e · I120 × 120 , where e denotes the noise level. X is generated by 

xi N ziu, e · I100 × 100  . The noise decreases from the first data set to the last one, indicating 

the correlation coefficient (CC) between X and Y increases. The ground truthes are shown in 

Fig. 1 (top row).

The canonical CCs (CCCs) are shown in Table 11. We observed that all methods were 

overfitted when CC was very low. As the CC increased, all methods were improved. The 

CCCs of sCCAR were the nearest values to the true CCCs, indicating sCCAR outperformed 

SCCA and Lasso. Fig. 1 presented the heat maps of v and u. Compared to the ground truth, 

our method obtained better v and u than SCCA and Lasso since they were consistent to the 

true signals as CC increased. The results demonstrated that sCCAR outperformed SCCA and 

Lasso owning to its integrated modeling strategy via absorbing the advantages of CCA and 

regression.

3.2. RESULTS ON REAL DATA

The real brain imaging genetics data were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). One goal of the ADNI is to 

test if serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early AD. For up-to-date 

information, see www.adni-info.org.

We here included 176 AD, 363 MCI and 204 healthy control (HC) participants (N = 743 in 

total) . The structural MRI scans were preprocessed with voxel-based morphometry (VBM) 

in SPM. They had been aligned to a T1-weighted template image, segmented into gray 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF) maps, normalized to MNI 

space, and were smoothed by an 8mm FWHM kernel. We subsampled the whole brain, and 

intended to test associations between a small subset of voxels (GM density measures) and 

SNPs under the guidance of diagnosis status. Finally, we extracted 465 voxels spanning the 
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whole brain. The impacts of the baseline age, gender, education and handedness had been 

eliminated via regression techniques. In addition, we included 58 SNPs from the AD-related 

genes such APOE. We aimed to identify voxels and SNP correlated with each other, and 

correlated with the diagnosis status simultaneously.

Table 2 shows the CCCs of all methods. sCCAR outperformed SCCA on testing results, 

showing its better generalization ability. The CCCs of Lasso were much higher than those of 

sCCAR and SCCA due to overfitting. Fig. 2 presents the heat maps of the canonical weights 

indicating the features of relevance, where each row corresponds to one method. The weight 

v associated with imaging markers is shown on the left panel, and u corresponding to SNPs 

is on right. sCCAR and SCCA held a very clear pattern with respect to both v and u, while 

Lasso was meaningless due to overfitting of v. The reason is that the diagnosis status is 

discrete and the Lasso modeling could be unsuitable. The imaging markers identified by 

sCCAR, e.g. the signals from the hippocampus whose atrophy is highly correlated with AD 

[12], was meaningful. Peak signals also included the parahippocampal gyrus, the inferior 

temporal gyrus and the superior temporal gyrus which are all correlated to AD. SCCA 

identified the hippocampus and parahippocampal gyrus, but it was over-sparsified leading to 

the miss of signals from the inferior temporal gyrus. This is owning to sCCAR’s 

incorporation of the diagnosis information, while SCCA is blind. The SNPs identified by 

sCCAR, including top signals rs429358 (APOE), rs4420638 (APOC1), rs769449 (APOE), 
rs439401 (APoE) and rs157582 (TOMM40), were all associated with AD. In summary, the 

results on this real data demonstrated that, by incorporating the diagnosis status information, 

sCCAR performed better than both SCCA and Lasso in bi-multivariate association 

identification for imaging genetics.

4. CONCLUSIONS

We proposed a novel integrated modeling method via combining CCA and regression to 

assure a diagnosis status guided bi-multivariate analysis tool. sCCAR outperformed SCCA 

and Lasso on both synthetic and real neuroimaging data. sCCAR can not only obtain better 

correlation coefficients, but also identify superior canonical weight pattern which indicates 

better feature selection ability. The results demonstrated that sCCAR could be an interesting 

bi- multivariate analysis method for brain imaging genetics.
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Fig. 1. 
Heat maps of canonical weights on synthetic data. Row 1 to 4: (1) Ground truth; (2) Lasso; 

(3) SCCA; (4) sCCAR. In each row, v is on the left panel, and u is on right.
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Fig. 2. 
Heat maps of canonical weights on real data. Each row corresponds to a method: (1) Lasso; 

(2) SCCA; (3) sCCAR. Within each row, the left panel shows the weight for QTs, and the 

right one shows the weight for SNPs.
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Table 1.

CCCs (mean±std) comparison on synthetic data.True CCs are in parentheses. The best values are in boldface.

data1 (0.05) data2 (0.35) data3 (0.66) data4 (0.91)

Lasso 0.76±0.07 0.77±0.03 0.85±0.03 0.90±0.04

Training SCCA 0.92 ±0.02 0.87±0.04 0.83±0.03 0.86±0.17

sCCAR 0.84±0.03 0.60±0.06 0.86±0.04 0.91±0.02

Lasso 0.34±0.14 0.24±0.21 0.36±0.21 0.51±0.32

Testing SCCA 0.30±0.17 0.31±0.14 0.50±0.14 0.62±0.17

sCCAR 0.22±0.20 0.41±0.26 0.67±0.16 0.90 ±0.06
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Table 2.

CCCs (mean±std) comparison on real data.

Lasso SCCA sCCAR

Training 0.37±0.00 0.28±0.01 0.25±0.01

Testing 0.37±0.04 0.23±0.02 0.26±0.03
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