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ABSTRACT 

X-ray based quantitative analysis of spine parameters is required in routine diagnosis or treatment planning. Existing 

tools commonly require manual intervention. Attempts towards automation of the whole procedure have mainly 

focused on vertebral bodies, whereas other regions such as the posterior arch also bear considerable amount of 

useful information. In this study, we combine a specific design of contextual visual features with a multi-class 

Random Forest classifier to perform pixel-wise segmentation and identification of all cervical spine spinous 

processes, on sagittal radiographs. Segmentations were evaluated on 62 radiographs, comparing to manual tracing. 

Correct identification was obtained for all subjects, and segmentation returned mean  SD values of: Dice 

coefficient = 88  8%; Hausdorff distance = 2.1  1.4 mm and; mean surface distance = 0.6  0.4 mm. The 

derived geometric parameters can be used to reduce the amount of manual intervention needed for spine modeling 

or to measure clinical indices.  

Index Terms— Spine X-ray, Spinous process, Multi-class Random Forest, Visual features, Segmentation, 

Identification 

1. INTRODUCTION

Each year, millions of people develop spine-related diseases, and are referred to specialists for treatment. In 

many circumstances, patients are instructed to get an X-ray for further assessment. X-ray imaging, either standard 

or biplanar, is commonly used for 2D and 3D spine shape modeling and quantitative spine analysis, since radiation 

dose is minimal and images are acquired in weight-bearing positions that preserve the spine pose and orientation 

for further analysis. All current available spine modeling tools require user intervention to determine some 

landmarks on X-rays [1], [2]. Rich literature exists describing the extraction of landmarks automatically or with 

minimal user involvement, such as the works in [3]–[6] for vertebrae corners or the works in [7], [8] for pedicle 

segmentation. However, automation remains very limited for structure localization or landmark detection in the 

spine posterior arch, while we know that this region is also of interest, especially in spine alignment analysis to 

detect evidences of injury or disorder [9]. Among the literature focusing on this domain, we can cite the work in 

[10], which developed a semi-automated vertebra identification-segmentation method based on generalized Hough 

transform (GHT) and K-means clustering, from which three landmarks were extracted to approximate the anterior 

vertebral curve, the posterior vertebral curve and the spinolaminar curve from high resolution sagittal radiographs 

of the cervical spine (C3-C7). Occlusion and changes in the test database were reported as the main error sources. 

For the same purpose, [11] proposed a semi-automated method to extract the spinolaminar curve over the entire 

cervical spine region, having segmented vertebral bodies, and a point manually positioned at the spinolaminar 

junction. Although sensitivity to the manual point placement was examined, the method also seems vulnerable to 

the chosen segmentation approach. Likewise, to assess cervical spine disorders, [12] developed an active appearance 
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model-based [13] framework to model vertebral bodies and spinous processes by extracting few landmarks. 

However, the proposed method seems sensitive to model initialization, especially for the spinous processes. 

In the current study, we aim at segmenting spinous processes of the cervical spine exploiting dedicated 

contextual features (CF) together with a multi-class Random Forest (RF) classifier. The outputs of the algorithm 

are spinous processes pixels with assigned labels and scores, determining to which spinous process (C1-C7) the 

pixels belong to and with what probability. Classification results are then refined. Manually segmented spinous 

processes are used as the comparison reference for evaluation. 

2. MATERIAL AND METHOD

In this study 62 sagittal X-rays, acquired with an EOS low dose system (EOS imaging, Paris, France) are used. 

They contained 434 spinous processes manually delineated. Images were collected from different research and 

imaging centers (pixel size = 0.1794 ×  0.1794 mm2). Subjects cover a variety of age (range: [8, 59] years, 

mean  SD = 19  11), sex, and pathology. The experimental protocol has been approved by centers’ ethical 

committees and written patient consents have been acquired. X-ray images (Fig. 1(a)) are pre-processed with 

Wiener and median filtering, followed by contrast limited adaptive histogram equalization (CLAHE) as done in [4] 

to enhance image quality while preserving boundaries (Fig. 1(b)). 

2.1. Contextual Features Extraction 

We previously introduced specialized patch-based Haar-like and contextual features for vertebrae corner detection 

in [4]. These features can capture intensity and gradient information not only locally but also from remote locations. 

In this study, we present a specific design of patch-based contextual features that acts in a pixel-wise manner 

enabling simultaneous detection, segmentation, and identification of the objects of interest.  

As illustrated in Fig. 1(c), a pool of features is obtained from [3 × 3] patches that are localized around a 

candidate pixel in different layers with radii 𝑟𝑛 and intra-layer distance 𝑑𝑟𝑛
, which are set as follows:

Fig. 1: (a) Original image. (b) Enhanced image. (c) Patches 

arrangements around every candidate pixel. 
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with 𝛼 = 4.2, 𝛽 = 0.1, and distances in pixels. The features aggregate mean and variance of intensities inside each 

patch, as well as the mean intensity difference between each patch and the central one, leading to 1,522 feature 

values for each pixel. Mean, variance and contrast term values are normalized to a unit 𝐿2-norm to increase stability

of the features against intensity variations across the image. 

2.2. Multi-class RF Classification 

For detection, segmentation and identification tasks, we train and test, in a leave-one-out fashion, a multi-class RF 

classification with parameters reported in Table 1. In this multi-class RF, we assign one class for each spinous 

process of cervical vertebrae (C1-C7) and one class for non-spinous process areas. For training, 𝑁 =  100 to 200 

(depending on the size of the spinous process) positive samples are randomly gathered from manually delineated 

spinous processes of 61 subjects, and 𝑁 = 500 negative samples collected from random non-spinous process 

regions. At testing stage, all image pixels from the test subject are input to the classifier to be examined and assigned 

a class label. The classification outcome provides detected spinous process pixels, the label of the spinous process 

they belong to, along with probability values computed as described in [14] (Fig. 2(a-b)). 

2.3. Refinement 

We first build a binary mask of the detections using the binary output of the RF classifier. Then connected 

components (CCs) smaller than 100 pixels are removed. In order to further refine the obtained CCs, a bounding 

hull approach [15] is used to build a non-convex enclosure on the set of detected boundary points. As a result, gaps 

within CCs are filled and boundaries are smoothed (Fig. 2(c)).  

Table 1 RF parameters and values 

𝑁𝐶 = 8  number of classes

𝑁𝑇𝑟𝑒𝑒 = 500 number of decision trees

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒

= 1,522 
number of features 

𝑁𝑠𝑓

= √𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒

number of selected features at each 

split node 

𝑁𝑜𝑏𝑠
number of observations in the 

training data 

𝑁𝑠

= 𝑁𝑜𝑏𝑠 − 1
maximum number of split nodes 

𝑁𝑙 = 1
minimum number of leaf node 

observations 

𝑁𝑏 = 10
minimum number of branch node 

observations 

Split criterion standard Gini node impurity index 



2.4. Identification 

Although we have labels for each spinous process, our initial experiments showed that these class labels have 

variable levels of reliability. We observed that the C2 spinous processes’ labels are highly reliable, given their 

particular shape and neighborhood. Therefore, in practice we consider C2 as the reference reliable label, while the 

other spinous processes are relabeled. To this end, first a large probability threshold (𝑇𝑝 = 0.85) is applied on the

C2 class labels to filter points with small membership probabilities. The geometrical average over the selected 

points coordinates (𝑃𝑟𝑒𝑓) provides the approximate location of C2 in the image, which serves as an anchor to locate

other spinous processes. From the refined CCs in Section 2.3 we measure each geometrical CC center and use a 

dedicated iterative labeling process based on position of CC centers with respect to 𝑃𝑟𝑒𝑓 to assign labels to

remaining CCs (Fig. 2(e)). 

2.5. Evaluation Metrics 

The following geometrical characteristics are evaluated for the detection of spinous processes (𝑆𝑃𝑠). 

(a) Spinous process geometrical center (𝑺𝑷𝑪𝒆𝒏𝒕𝒆𝒓) is the spinous process’s center of mass, and is obtained

via averaging of its pixel coordinates. 𝑆𝑃𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑟𝑟𝑜𝑟 is the root-mean-square error (RMSE) of the distances

between the ground truth and the algorithm-based geometrical centers positions. 

(b) Spinous process principal axis of inertia (𝑺𝑷𝑶𝒓𝒊) is defined via fitting an ellipse [16] to each

segmented spinous process (Fig. 2(f)). The major axis of the ellipse is the axis of inertia. The angle between 

the axis of inertia and the horizontal image axis determines the spinous processes orientation and is used to 

measure RMSE orientation differences (𝑆𝑃𝑂𝑟𝑖𝑒𝑟𝑟𝑜𝑟) between automatically and manually segmented

spinous processes. 

To evaluate the segmentations, we applied the following three metrics to compare the algorithm-based 

segmentation (Fig. 2(e)) and the ground truth (Fig. 2(d). 

(c) Dice metric is used to determine the overlap. 

(d) Hausdorff distance (HD) is calculated between the ground truth and the algorithm outcome. 

(e) Mean surface distance (MSD), which is less sensitive to outliers. 

3. RESULTS

All spinous processes on all cases were correctly detected and labeled. Segmentation errors are reported in Table 2 

via mean, median and standard deviation (𝑆𝐷) values for individual and all spinous processes. Overall, we obtained 

an average Dice coefficient of 88  8%, average HD of 2.1  1.4 mm, and average MSD of 0.6  0.4 mm. For 

different spinous processes, the segmentation performance is quite similar but the Dice coefficient is a bit lower in 

Fig. 2: Multi-class RF classification results. (a) Obtained class labels for different spinous processes (SP): red=SP1, yellow=SP2, cyan=SP3, 

magenta=SP4, blue=SP5, green=SP6, and black=SP7. (b) Probability map for each image pixel. (c) Results after the refinement stage. (d) 

Spinous processes manual ground truth, and (e) the algorithm-based segmentation-identification. (f) Orientation (via fitted ellipses major 

axis) and centers overlaid on a sagittal X-ray. 



C1, while HD and MSD are higher in C7. Spinous process centroids positioning mean error is below 1 mm in C1-

C6. Orientation differences return the best precision for C3-C7 with respective mean, median, and 𝑆𝐷 of 3.6, 2.8, 
and 3.3. Orientation values in C1 and C2 are not reported in Table 2, as these structures are often round-shaped 

with no dominant orientation. Fig. 3 illustrates the algorithm results together with the ground truth on some subjects 

with varied spinous processes in terms of shape, size, orientation, and image contrast.  

Table 2 
Spinous processes segmentation evaluation using different metrics. HD=Hausdorff distance, 

MSD=mean surface distance  
Dice (%) HD (mm) MSD (mm) 𝑆𝑃𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑟𝑟𝑜𝑟 (mm) 𝑆𝑃𝑂𝑟𝑖𝑒𝑟𝑟𝑜𝑟 (∘)

Region mean SD median mean SD median mean SD median mean SD median mean SD median 

C1 82 15 86 2.0 1.0 1.8 0.6 0.4 0.5 0.8 0.5 0.6 – – – 

C2 91 4 93 2.1 1.6 1.8 0.6 0.4 0.5 0.7 0.5 0.5 – – – 

C3 90 4 91 1.7 0.9 1.4 0.5 0.2 0.4 0.6 0.4 0.5 4.7 4.4 3.3 

C4 89 4 90 1.7 0.8 1.4 0.4 0.2 0.4 0.7 0.5 0.6 3.7 3.0 2.9 

C5 86 6 88 2.1 1.3 1.7 0.6 0.3 0.4 0.9 0.7 0.6 3.5 3.4 2.4 

C6 88 5 90 2.1 1.5 1.7 0.5 0.3 0.4 0.9 0.8 0.7 2.9 2.4 2.5 

C7 87 8 90 3.1 2.0 2.5 0.8 0.6 0.6 1.3 0.9 1.1 3.0 2.8 2.4 

Ave. 88 8 90 2.1 1.4 1.7 0.6 0.4 0.5 0.8 0.7 0.6 3.6 3.3 2.8 

Fig. 3: Spinous processes segmentation examples from 3 subjects 

with different sizes and orientations. (a)-(c) Manual ground truth. 

(d)-(f) Corresponding automated segmentation results. 



4. DISCUSSION AND CONCLUSION

In this study, we presented an automated framework for cervical vertebrae spinous process detection, 

segmentation, and identification. To do so, we used a leave-one-out cross validation approach to train and test a 

multi-class RF classifier that utilizes dedicated contextual features as predictors. Considering the huge variety in 

shape, size, orientation, and even contrast of different spinous processes, validation results demonstrate very 

promising outcomes (Fig. 3). 

Despite the critical importance of assessing the spine posterior arch parameters, to clinically analyze the spine 

state and its probable abnormalities [9], or to morphologically model the spine for injury risk anticipation [17], only 

few works have dealt with this problem, all requiring one or more landmarks on spinous processes. In [10], [11] for 

instance a landmark on or close to the spinolaminar curve was chosen to approximate it via point interpolation. 

While there are many works addressing vertebral body detection, segmentation, and identification [18]–[20], to the 

best of our knowledge we introduce for the first time a fully automated method for spinous process detection, 

segmentation, and identification on sagittal X-rays of the cervical spine. Dice, HD and MSD evaluation metrics 

confirmed the efficiency of the proposed algorithm in accurately segmenting the spinous processes. Dice coefficient 

in C1 spinous process is a bit lower than in the others, which is understandable, as the C1 spinous process is much 

smaller, and minor surface differences can cause a noticeable decrease in Dice coefficients. Regarding the 

orientation evaluation, C1 and C2 are not very robust, as their shape is circular, which makes the ellipse fitting 

uncertain, unlike the more elongated C3-C7 spinous processes with the promising average 𝑆𝑃𝑂𝑟𝑖𝑒𝑟𝑟𝑜𝑟 of

3.6  3.3. 

Overall, a high localization precision with a minor difference between various spinous processes is achieved. 

C7 shows slightly higher error, as in many subjects C7 is partially hidden by other anatomical structures leading to 

more misdetections and false positives. From a classification point of view, labeling is more robust in C1, C2, C3, 

C6, and C7. In these regions, we believe that the obtained labels can robustly be utilized as references for vertebrae 

identification. Although RF classification is highly robust in detecting C4 and C5 spinous processes (as shown in 

the evaluation), labels are sometimes not correctly assigned. The reason seems to be the similarity between these 

adjacent spinous processes in terms of shape, intensity and neighborhood. To tackle this limitation, other robustly 

identified spinous processes contribute to the labeling procedure in our post processing step.  

Whilst the variability of structures in the cervical spine and especially the spinous processes, our results show 

that a pixel-wise object identification is achievable using our contextual visual features incorporated in a trained 

multi-class RF classifier, and the algorithm is robust to shape deformities and rotations. Our proposed contextual 

feature’s formation and formulation proved to be highly discriminative while not computationally demanding. We 

are able to exploit full cervical spine fields of view at native image resolution. Comparing to deep-learning such as 

[21] will be the focus of our future work, while tackling current challenges with this approach, such as combining 

segmentation and labeling tasks, needs for a large annotated cohort and preserving image resolution for fine 

structures. 

The introduced feature normalization step, while simple, is crucial for the stability of the results. Overall, the 

presented framework has a great potential for being integrated in clinical routine and being applied in a spine 3D 

model reconstruction procedure, resulting in less manual intervention requirements. 
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