
GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR 
ALZHEIMER’S DISEASE CLASSIFICATION

Tzu-An Song1,*, Samadrita Roy Chowdhury1,*, Fan Yang1, Heidi Jacobs2, Georges El 
Fakhri2, Quanzheng Li2, Keith Johnson2, and Joyita Dutta1,2

1Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, 
MA

2Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, 
Boston, MA

Abstract

Graph convolutional neural networks (GCNNs) aim to extend the data representation and 

classification capabilities of convolutional neural networks, which are highly effective for signals 

defined on regular Euclidean domains, e.g. image and audio signals, to irregular, graph-structured 

data defined on non-Euclidean domains. Graph-theoretic tools that enable us to study the brain as 

a complex system are of great significance in brain connectivity studies. Particularly, in the context 

of Alzheimer’s disease (AD), a neurodegenerative disorder associated with network dysfunction, 

graph-based tools are vital for disease classification and staging. Here, we implement and test a 

multi-class GCNN classifier for network-based classification of subjects on the AD spectrum into 

four categories: cognitively normal, early mild cognitive impairment, late mild cognitive 

impairment, and AD. We train and validate the network using structural connectivity graphs 

obtained from diffusion tensor imaging data. Using receiver operating characteristic curves, we 

show that the GCNN classifier outperforms a support vector machine classifier by margins that are 

reliant on disease category. Our findings indicate that the performance gap between the two 

methods increases with disease progression from CN to AD. We thus demonstrate that GCNN is a 

competitive tool for staging and classification of subjects on the AD spectrum.
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1. INTRODUCTION

Alzheimer’s disease, a neurodegenerative disorder that currently affects over 30 million 

people worldwide, is associated with dysfunction of the brain connectivity network and is 

considered a connectopathy or connectivity disorder. A number of recent studies have 

attempted to diagnose and stage AD using image-derived brain connectivity graphs [1, 2]. 

Graph-based classifiers are becoming increasingly significant in the field of connectomics 
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which uses advanced neuroimaging techniques to map brain connectivity with the ultimate 

goal of unraveling mechanistic details of cognition, behavior, and disease [3]. Graphs are 

generic data representation forms that are associated with irregular, non-Euclidean domains. 

In recent years, convolutional neural networks (CNNs) have revolutionized data analytics for 

signals with underlying Euclidean structure e.g. audio and images. CNN-based techniques 

for data representation and classification have outperformed more traditional machine 

learning approaches for datasets with Euclidean structure by a staggering margin. The non-

Euclidean nature of the domains in which graph signals are defined implies that common 

concepts such as local neighborhood definitions (at the domain level) and shift invariance or 

equivariance (at the system level) do not have natural definitions for these datasets. 

Consequently, the convolution operation, which lies at the crux of CNN architectures, is not 

well-defined on such non-Euclidean domains. Very recently, there has been a series of 

endeavors toward deep geometric learning with the goal of extending CNN models to non-

Euclidean datasets defined on irregularly-structured domains such as graphs and manifolds 

[4–6]. In this paper, we implement and validate a multi-class graph CNN (GCNN) classifier 

for AD. The classifier uses structural connectivity inputs in the form of graph Laplacians 

derived from diffusion tensor imaging (DTI) to generate the cognitive status category label 

as its output. Four class labels are used in our work: cognitively normal (CN), early mild 

cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and Alzheimer’s 

disease (AD). The GCNN implementation details and the DTI data processing pipeline are 

presented in section 2. Training and validation details and GCNN performance measures are 

provided in section 3. Section 4 provides a summary of this work and comments on future 

directions.

2. METHODS

2.1. Graph Convolutions

Two key properties that are leveraged by CNNs and which account for their efficiency are 

local connectivity and shift in variance. CNN feature extraction is based on receptive fields 
that operate on local neighborhoods. This leads to global parameter sharing across spatial 

locations thus exploiting translation invariance. Parameter sharing in neural networks 

significantly reduces the number of unknown parameters or weights to be computed in the 

training phase and drastically reduces the computing overhead. Though these ideas are 

fundamental to images and time series, a direct generalization of these for graphs is non-

trivial, as real-world graphs lack a grid structure, and not all nodes have the same number of 

neighbors following the same order. The problem could either be tackled in the spectral 

domain, or locality may be extended to graph signals by utilizing their irregular 

neighborhood structure with varying numbers of neighbors per node.

A graph is defined as 𝒢 = (𝒱, ℰ), with a set of nodes (or vertices) V = {1,2,… p}and a set 

of edges ℰ ⊂ 𝒱 × 𝒱 connecting the nodes. In case of an undirected graph, the condition 

(i, j) ∈ ℰ iff ( j, i) ∈ ℰ holds. Typically, graph representations rely on an adjacency matrix 

W ∈ ℝ 𝒱 × 𝒱 , where each element of W is an edge weight, i.e., a connection strength 

between a pair of nodes. The normalized graph Laplacian is defined as L = I - D−l/2WD−l/2, 

where D =  diagi ∑ j ≠ i wi j  is The diagonal degree matrix. In a brain connectivity network, 
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the nodes typically represent either individual voxels or supersets of voxels representing 

anatomically meaningful parcellations of the brain. Edges, in a brain network, are indicative 

of connection strengths. These connections may be structural (e.g. brain networks based on 

DTI) or functional (e.g. brain networks based on PET or fMRI).

We have optimized a GCNN paradigm adapted to brain networks [7] for application to AD 

datasets. In this construction of CNNs, the adjacency matrix is utilized to create eight edge-

to-edge layers, one edge-to-node, and one node-to-graph layer (in that order). It has been 

shown that an edge-to-edge filter over the graph 𝒢 is equivalent to a filter over a line graph 

ℒ with a k-hop factor of 1, which in turn, may be expressed as a generalized convolution 

[8]. The to-node filter creates a unitary output at each node by accumulating the 

convolutions of the adjacency matrix with one-dimensional spatial row and column filters. 

The graph-to-node filter is a one-dimensional spatial filter that furnishes a single response 

from all nodes.

2.2. GCNN Implementation

We implemented a GCNN multi-class classifier using the Caffe deep learning suite. The 

implementation was based on the architecture described in Fig. 1. The network contained 

eleven layers including nine convolutional layers (denoted Conv), two fully connected layers 

(the first one with 32 units and the second one with 10 units), each followed by a rectified 

linear unit (denoted ReLU), and a softmax output layer computing class-membership 

probabilities.

2.3. Data Description

DTI data for this study was derived from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [9], a public repository containing images and clinical data from 2000+ human 

datasets. The primary labeled 4-class (CN, EMCI, LMCI, and AD) datasets used used for 

training and validation were obtained from ADNI. Subject demographics are provided in 

Table 1.

2.4. Data Augmentation

We utilize the adaptive synthetic sampling (ADASYN) approach [10]. This approach 

extends the synthetic minority oversampling technique (SMOTE) [11] by adaptively 

generating minority samples that are harder to learn than samples that are easier to learn. All 

4 data classes (12 original datasets per class) were augmented to a size of 132 datasets per 

class. Of these, 100 were used for training, and the remaining were used for validation.

2.5. Data Processing

Structural networks were computed from a series of diffusion MR images with anatomical 

reference information obtained from corresponding Tl-weighted MR scans. A sample 

diffusion image and the corresponding Tl-weighted MR are shown in Fig. 2A and B 

respectively. White matter fiber tracts were reconstructed from the diffusion MR images via 

tractography using the software MedlNRIA. Prior to tractography, distortions and possible 

misregistrations of diffusion MR image due to eddy currents and/or motion are corrected via 

the FSL toolbox. The final step of the pipeline is the computation of adjacency matrices via 
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fiber counting. To do so, first, the Tl-weighted anatomical reference images were segmented 

using an atlas after deformable registration to match the FreeSurfer anatomical template 

shown in Fig. 2C. This step generated a segmented image volume based on the Freesurfer 

Desikan-Killiany atlas (Fig. 2D) containing 112 parcellated anatomical regions-of-interest 

(ROIs). The segmented T1 MR was then registered to the diffusion images. Fiber counting 

was performed on the segmented diffusion image volumes to derive pairwise inter-region 

connection strengths thereby yielding an adjacency matrix. A series of 112 × 112 adjacency 

matrices were computed. Fig. 2E shows sample fiber maps generated by tractography, and a 

sample adjacency matrix is shown in Fig. 2F.

3. RESULTS

3.1. Evaluation Metric and Reference Approach

To evaluate the classifier performance, we resorted to the receiver operating characteristic 

(ROC) curve, which is a graphical plot of the true positive rate (TPR = sensitivity) vs. the 

false positive rate (FPR = 1 - specificity) for a classifier as the discrimination threshold is 

varied. ROCs are commonly used for binary classifiers. For our multi-class classifier, we 

computed separate ROCs for each class which reflect the overall accuracy for a given class 

relative to all other classes. As a reference approach to determine relative accuracy of 

classification, we rely on a multi-class support vector machine (SVM) classifier. SVM 

performs classification by determining the hyperplane that best separates two classes after 

nonlinearly mapping the data to a high-dimensional projection space. Unlike representation 

learning techniques, SVMs are reliant on a predefined set of input features. Here node 

degrees and clustering coefficients computed from the graphs were used as SVM inputs.

3.2. Classification Performance

The GCNN was trained and tested using the Caffe platform on a Thinkmate VSX R5 540V4 

workstation with an NVIDIA 1080 Ti 11 GB graphics card. During training, an L2 loss 

function was minimized using the stochastic gradient descent (SGD) algorithm. The 

algorithm parameters were set to the following: learning rate 0.0003, batch size 10, learning 

momentum 0.9, weight decay 0.0001, and 200 training epochs. The final ROC curves 

comparing the GCNN classifier and the SVM classifier are shown in Fig. 3. The two 

classifiers showed near-perfect performance for the CN category with ample data samples. 

For the EMCI, LMCI, and AD categories, GCNN greatly outperformed SVM. The 

performance gap between the two methods increased with increase in levels of disease 

progression from CN to AD. For robust assessment, we adopted a 10-fold cross-validation 

strategy. Average accuracy, maximum accuracy, and standard deviation of accuracy across 

runs are reported in Table 2.

4. CONCLUSION

We have implemented and validated a multi-class GCNN classifier for classification of 

subjects on the AD spectrum. We trained and validated the network using structural 

connectivity graphs based on DTI. ROC analysis results show that the GCNN classifier 

outperforms SVM by margins that are reliant on disease category. Our findings show that the 
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performance gap between the two methods increases with disease progression from CN to 

AD. Our result is important from a technical standpoint because it elucidates the potential 

for the GCNN classifier to yield high performance under low-sample-size settings. The 

initial implementation relies on simple L2 loss function. As future work, we will extend this 

classifier to larger datasets, test alternative loss functions, and test various GCNN 

architectures and implementations.
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Fig. 1. 
Architecture of the proposed graph convolutional neural network consisting of several 

convolutional layers (Conv) alternating with rectified linear units (ReLu), one or more fully-

connected layers (FullyConn), and a softmax output layer.
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Fig. 2. 
Sample brain images (transverse views): (A) High-resolution Tl-weighted anatomical MR 

scan, (B) Diffusion MR scan, (C) Anatomical template in native (FreeSurfer) space, (D) 

FreeSurfer atlas with 112 anatomical regions, (E) Fiber bundles reconstructed via 

tractography, and (F) Adjacency matrix computed via fiber counting.
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Fig. 3. 
ROC curves comparing GCNN and SVM performance for each of four classes: CN, EMCI, 

LMCI, and AD.
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Table 1.

Subject demographics

Class n Age (y): mean/s.d. Sex: M/F

CN 12 77.4/7.8 2/10

EMCI 12 78.8/6.8 6/6

LMCI 12 72.4/6.4 5/7

AD 12 72.0/10.2 6/6
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Table 2.

Performance comparison

Classifier Average accuracy Maximum accuracy Standard deviation

GCNN 0.89 1 0.06

SVM 0.65 0.94 0.13
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