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ABSTRACT
Electroencephalogram (EEG) has been widely used to study
cortical connectivity during acquisition of motor skills. Pre-
vious studies using graphical models to estimate sparse brain
networks focused on time-domain dependency. This paper in-
troduces graphical models in the spectral domain to character-
ize dependence in oscillatory activity between EEG channels.
We first apply a transformation based on a copula Gaussian
graphical model to deal with non-Gaussianity in the data. To
obtain a simple and robust representation of brain connec-
tivity that explains most variation in the data, we propose a
framework based on maximizing penalized likelihood with
Lasso regularization utilizing the cross-spectral density ma-
trix to search for a sparse precision matrix. To solve the opti-
mization problem, we developed modified versions of graph-
ical Lasso, Ledoit-Wolf (LW) and the majorize-minimize
sparse covariance estimation (SPCOV) algorithms. Simula-
tions show benefits of the proposed algorithms in terms of
robustness and accurate estimation under non-Gaussianity
and different structures of high-dimensional sparse networks.
On EEG data of a motor skill task, the modified graphical
Lasso and LW algorithms reveal sparse connectivity pattern
among cortices in consistency with previous findings. In ad-
dition, our results suggest regions over different frequency
bands yield distinct impacts on motor skill learning.

Index Terms— Brain connectivity, EEG, high-dimensional
covariance, graphical models, copulas

1. INTRODUCTION

A graph is a model representation of a complex system deter-
mined by a set of nodes (vertices) and edges connecting them
[1]. On the foundation of graph and probability theory, graph-
ical models (probabilistic graphical model) have been widely
used in Bayesian statistics, statistical learning and machine
learning. In the framework of graphical models, each node
represents a random variable and edges denote the probabilis-
tic relationship between nodes. The graph depicts the struc-

ture where the joint distribution of random variables can be
decomposed into a product of factors depending only on sub-
sets of variables [2].

Graphs have been introduced to modeling brain connec-
tivity where nodes represent cortical and subcortical regions
while edges characterize functional and structural connec-
tions between cortical nodes [3]. In the literature of brain
graph modeling, much work has been done for all major
modalities such as the functional magnetic resonance imag-
ing (fMRI) and the electrophysiological data. To name a few,
functional brain graphs and their relevant works have been
constructed from fMRI [4], electroencephalography (EEG)
signals [5, 6], magnetoencephalography (MEG) data [7] and
local field potentials (LFPs) signals [8, 9]. From diffusion
tensor imaging (DTI) and diffusion spectrum imaging (DSI),
structural brain graphs have been studied by [10]. Among
them, sparse graphical models, which are widely discussed
in [11], are highly efficient in inferring dependence between
multielectrode brain recordings. The sparsity of graph pro-
vides a robust approach that highlights the most significant
interactions between brain cortices and helps to interpret the
data [12]. However, most previous works on graphical mod-
eling of brain networks focused on time-domain dependence
and assumed Gaussianity in the data.

To address these limitations, we introduce a novel frame-
work based on sparse graphical models in the spectral do-
main for estimating brain connectivity from EEG data. The
main contributions of this paper are as follows: (1.) We in-
troduce copula Gaussian graphical models to account for the
non-Gaussianity of signals on frequency domain, inspired by
the work of [13]; (2.) We develop a framework to capture
the between-channel dependence in the oscillatory activity;
(3.) By including a regularization term, we are able to ob-
tain a simple and robust representation that captures the most
critical interactions between brain cortices; (4.) Compared to
the traditional graphical models, we replace the sample co-
variance in the penalized likelihood with a spectral matrix
to induce a sparse graph in the spectral domain. The pro-
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posed method can be seen as a generalized version of time-
domain Gaussian graphical models. Specifically, our method
produces sparse estimates of covariance matrices. We regu-
larize the log likelihood with a lasso penalty on the entries of
covariance matrix. The penalty is used to reduce the effec-
tive number of brain connectivity and thus produces sparse
and robust estimates [14]. Many algorithms have been intro-
duced to solve this optimization problem. For example, [15]
introduced a novel algorithm with the assumption of order-
ing to the variables. Another study used relevance networks
with an optimization such that pairwise correlation beyond a
threshold are linked by an edge [16]. [17] proposed an algo-
rithm by introducing shrinkage operators. [18] utilized lasso-
regression based method to solve the optimization problem.
In this paper, we develop modified algorithms based on the
works of graphical lasso [11], sparse estimation of covariance
proposed by [14] and Ledoit-Wolf algorithm [19]. The ro-
bustness and performance of the proposed algorithms were
evaluated via simulations and applied to estimating brain con-
nectivity network on a motor-task EEG data.

2. GRAPHICAL MODELS FOR BRAIN NETWORKS

In this section, we first discuss preliminaries on graphical
models and its application to modeling brain connectivity
from EEG data. We then formulate the optimization problem
in estimating sparse connectivity networks in the spectral
domain and propose three algorithms in solving the problem.

2.1. Copula Gaussian Graphical Model

Suppose we have non-Gaussian random variables Y1, Y2, · · · , Yn.
We define hidden Gaussian random variables X1, X2, · · · , Xn

through the relationship that [12]

Xk ∼ N (0,Σ−1
k ), (1)

Yk = F−1
k (Φ(Xk)), (2)

where Σk is the precision matrix, Φ is the cumulative distri-
bution function of a standard Gaussian random variable and
Fk is the empirical cumulative distribution function of Yk. In
practice, F−1

k can be estimated by

F̂−1
k (y) = inf{z, Fk(z) ≥ y}.

2.2. Modeling EEG Connectivity

In practice, EEGs recorded from different electrodes are
highly non-Gaussian multivariate time series. By imple-
menting copula Gaussian graphical models, the original time
series is transformed into Gaussian data where conventional
Gaussian graphical models can be applied.

Suppose a graphical model G = (V,E) uniquely defines
the conditional independence on Gaussian process X(t) =
(X1(t), · · · , Xp(t)). In graph G, each node Vi denotes a sin-
gle time series Xi(t). The absence of edge between Vi and

Vj denotes the conditional independence between time series
Xi(t) and Xj(t) given the rest of nodes. Under the assump-
tion that the cross-variance function of X(t) is summable,

∞∑

τ=−∞
|cov{Xi(t), Xj(t+ τ)}| < ∞, ∀i, j,

we define the cross-spectral density matrix of X as

Si,j(ω) = F{cov(Xi, Xj)},

where F denotes the Fourier transform. The (squared) coher-
ence is defined as Ci,j(ω) =

|Si,j(ω)|2
Si,i(ω)Sj,j(ω) . As a result of

[20], the Gaussian process Xi and Xj are conditional inde-
pendence if and only if

{S(ω)−1}ij = 0, ∀ω.

In practice, we substitute an estimator for S(ω) using the em-
pirical variance-covariance matrix of the time series X(t).

2.3. Proposed Estimation Algorithms

We have transformed the EEG data into quasi-Gaussian time
series with empirical variance-covariance matrix S(ω). In
sparse graphical models, true brain connectivity involving
the strongest and the most relevant connections is uniquely
determined by the sparse precision matrix (the inverse of the
covariance matrix). The objective function, defined as the
regularized negative log-likelihood function is given by

minimize
Σ

− log det(Σ(ω)) + tr(S(ω) ∗ Σ(ω)) + λ ∗ ||Σ(ω)||1
subject to Σ(ω) � 0,

(3)
where S(ω) is the empirical spectral density matrix defined
above, ||Σ(ω)||1 is the l1-norm of Σ(ω) as the sum over the
absolute values of entries in matrix Σ(ω), and λ is a tuning
parameter controlling the amount of l1 shrinkage. We apply
three algorithms to solve the optimization problem (3).

SPCOV (Majorize-Minimize) algorithm. In the objective
function (3), tr(S(ω) ∗Σ(ω)) + λ ∗ ||Σ(ω)||1 is convex while
log det(Σ(ω)) is concave, thus a majorize-minimize scheme
could be used [11]. In summary, this algorithm consists of
two loops, the outer loop approximates the non-convex prob-
lem and the inner loop solves each convex relaxation.

Graphical lasso algorithm. We also propose a graphical
lasso algorithm. The rationale is that suppose Σ̂(ω) is the es-
timate of Σ(ω), then one can solve the problem by optimizing
over each row and corresponding column of Σ̂(ω) in a block
coordinate descent fashion.

Modified Ledoit-Wolf algorithm. Inspired by the works
of [19], [21] and [22], we also implement a modified Ledoit-
Wolf algorithm to address the optimization problem (3).
Specifically, we utilize the sample covariance S(ω) and the
maximum likelihood estimator SML(ω) to obtain a shrinkage
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estimator which compromises between variance and bias.
The estimator is then denoted as Σ̂(ω) = π ∗ S(ω) + (1 −
π) ∗ SML(ω) The shrinkage intensity can be estimated by
by minimizing a risk function based on mean square errors
between the true and estimated precision matrix

π̂ = argmin E(||Σ̂(ω)− Σ(ω)||2)

3. SIMULATIONS

In this section, various simulation scenarios were considered
to evaluate the performance of the proposed algorithms. In
each scenario, we created different types of sparse symmetric
positive definite matrices to be the true covariance structure.
We randomly generated 200 samples from the true covariance
structure and then used the data as the input of the proposed
algorithms. Each scenario was repeated 1000 times. We eval-
uated the performance of our method in terms of correctly
identifying the zero elements of Σ and the discrepancy with
the true precision matrix by mean-square error, ||Σ̂−Σ||F /p
and entropy loss, − log det(Σ̂Σ−1) + tr(Σ̂Σ−1) − p respec-
tively, where p is the number of parameters.

The first scenario used the cliques model where we set the
precision matrix of the form Σ = diag(Σ1,Σ2,Σ3). Each Σi

in the diagonal represented a 6 ∗ 6 dense matrix. Other parts
of the matrix were zero. The second scenario was random
model. The sparse graph was created by assigning Σij = Σji

to be non-zero with probability 0.02, independently of other
elements. The third scenario was based on more realistic con-
nectivity pattern estimated from the real EEG data. The pre-
cision matrix was calculated from the real data and used to
generate simulated signals based on a non-Gaussian distribu-
tion (log normal) to evaluate the robustness of our method to
possible violation of the Gaussian assumption.

From the Tables 1 and 2, we can see that both graphical
Lasso and Ledoit-Wolf methods give smaller mean square er-
ror and entropy loss compared to SPCOV in both scenarios. In
addition, all the three algorithms were more accurate and ro-
bust in random model. In Fig. 1, the different shades of color
in the connectivity matrix indicated the correlation between
each nodes and darker colors demonstrated stronger correla-
tions. It can be seen that the estimated connectivity matrix
obtained from graphical Lasso and Ledoit-Wolf algorithms
were in high accordance with the true covariance structure.
In summary, simulations suggest that both graphical Lasso
and Ledoit-Wolf methods are competitive for identifying the
sparsity structure of the simulated data.

Table 3 summarizes the results on the non-Gaussian data
simulated based on connectivity network of real EEG. It can
be shown that for all estimation algorithms, the proposed
copula graphical model clearly outperforms traditional Gaus-
sian graphical models, producing lower errors with relatively
small standard errors. This result confirms the robustness of
our method when the normality assumption is violated.

(a)

(b)

Fig. 1: True connectivity matrices simulated using (a) random model
and (b) cliques model, and their estimates by different methods.

(a)

(b)

Fig. 2: Estimated connectivity matrices from EEGs during motor
skill learning for (a) β and (b) γ frequency band.
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Table 1: Averages and standard errors of mean-square error and entropy Loss for estimated covariance matrices obtained by different methods,
over 1000 replications of simulated data under random model and cliques model.

Random Model Cliques Model
Method Mean-Square Error Entropy Loss Mean-Square Error Entropy Loss

Graphical Lasso 2.723 ∗ 10−5 ± 1.020 ∗ 10−6 0.232± 0.003 2.730 ∗ 10−5 ± 1.060 ∗ 10−6 0.230± 0.003
Ledoit-Wolf 5.170 ∗ 10−5 ± 6.300 ∗ 10−6 0.180± 0.001 5.270 ∗ 10−5 ± 6.300 ∗ 10−6 0.180± 0.001
SPCOV 7.423 ∗ 10−5 ± 9.100 ∗ 10−6 0.732± 0.089 8.200 ∗ 10−5 ± 1.370 ∗ 10−6 0.700± 0.092

Table 2: Averages and standard errors of the execution time for co-
variance estimation by different methods over 1000 replications of
simulated data under random model and cliques model.

Random Model Cliques Model
Method Execution Time Execution Time

Graphical Lasso 0.400± 6.012 ∗ 10−3 0.330± 4.023 ∗ 10−3

Ledoit-Wolf 0.007± 5.230 ∗ 10−5 0.001± 1.920 ∗ 10−5

SPCOV 0.152± 3.323 ∗ 10−2 0.630± 2.272 ∗ 10−1

Table 3: Averages and standard errors of the mean-square errors
of covariance matrices obtained by the traditional Gaussian and the
proposed graphical models, over 1000 replications of simulated data
generated by the estimates of EEG data.

Algorithm Method Mean-Square-Error

Graphical Lasso
Gaussian 4.234 ∗ 10−3 ± 4.304 ∗ 10−4

Proposed Approach 2.103 ∗ 10−3 ± 3.103 ∗ 10−4

Ledoit-Wolf
Gaussian 6.020 ∗ 10−3 ± 5.120 ∗ 10−4

Proposed Approach 5.004 ∗ 10−3 ± 3.290 ∗ 10−4

SPCOV
Gaussian 8.239 ∗ 10−3 ± 6.302 ∗ 10−4

Proposed Approach 6.034 ∗ 10−3 ± 5.020 ∗ 10−4

4. APPLICATION TO BRAIN CONNECTIVITY FOR
STROKE REHABILITATION

We illustrate an application of our method to a EEG dataset
from a multi-subject stroke experiment conducted at the
University of California Irvine Neurorehabilitation Lab (PI:
Cramer). During the experiment, participants sat in a chair
facing a monitor in a single session. Their task was to make
movements across centers of each circle on the screen. To
minimize the variability among individuals, the researchers
measured the awake resting-state EEG for 3 minutes (EEG-
Rest) at 1000 Hz prior to the motion task. Then, the measure-
ment of each participant’s maximum arm movement speed
was obtained, and a baseline assessment of motor skill task
was recorded. During this procedure, EEG was measured
(EEG-Test1). Later on, the participant was required to receive
a practice block, followed by another test block. Finally, after
three tests and two practice blocks were done, the EEG was
obtained, which comprised of four scenarios – EEG-Test(1-3)
and EEG-Rest. The dataset consists of 16 subjects. EEG data
of 160 trials (epochs), 1000 time points and 256 channels
from different cortical regions were recorded for each subject
and each condition. In this paper, we chose subject named
“YUGR” for analysis and considered 160 epochs from EEG-
Rest, 73, 74 and 63 trials from EEG-Test 1-3 respectively.

To study the brain connectivity during the motion exper-
iment, we applied the proposed method to the EEG data. It
has been shown that the oscillatory activities of lower β and

γ bands play a critical role in motor learning [23] and thus
we mainly focus on these two bands in this paper. One of the
interesting scientific questions is to uncover the latent cortical
structure that highly correlates to patient motor skill develop-
ment. Motivated by the results from simulations, we applied
our approach to search for the solution. Fig. 2 shows the con-
nectivity matrix across different brain cortices from two algo-
rithms over lower β and γ bands. It can be found that the two
algorithms result in a similar pattern in regrading to the corre-
lation between cortices. In particular, over lower β bands, the
total cortices can be classified as four regions in which high
association can be realized. After compared with the topo-
graphic representation, we find that one of the critical regions
is associated with the left primary motor area. It has been
shown that the coherence from this region is a strong predic-
tor of motor skill acquisition [23]. The other highly associ-
ated areas are pre-frontal region, right lateral parietal region
and left medial parietal region. For γ band, similar patterns
can be observed although the sparsity is less obvious. The
benefits of using the proposed approach can be easily estab-
lished when comparing with the original coherence matrix.
Our method is able to capture the most critical association
patterns that conveys scientific insights. The results of our
proposed framework serve as further evidence and also pro-
vides alternative directions in understanding how oscillatory
activities are associated with motor skill learning.

5. CONCLUSION

We have developed a method to model brain connectivity
on frequency domain through graphical models based on
the framework of copula Gaussian model. We modified the
graphical Lasso, Ledoit-Wolf and SPCOV algorithms to solve
the optimization problem (3) to estimate a sparse connectivity
matrix in the spectral domain. Simulations results show the
advantages of the proposed method in handing non-Gaussian
data and in recovering different sparsity structures in the con-
nectivity matrix. The proposed algorithms were applied to
real EEG data from the motion experiment. Results show
the sparsity of the brain connectivity between cortices, which
not only agrees with the results from previous studies, but
also provides new insights that EEG cortical connectivity at
different frequency bands may predict motor skill acquisition.
Future work will extend the proposed framework to multi-
subject analysis and the time-varying or dynamic effective
connectivity based on recent work [24, 25].
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