1902.00100v1 [cs.CV] 31 Jan 2019

arXiv

LEARNING METRIC GRAPHS FOR NEURON SEGMENTATION IN ELECTRON
MICROSCOPY IMAGES

Kyle Luther

Princeton University
Department of Physics

ABSTRACT

In the deep metric learning approach to image segmentation,
a convolutional net densely generates feature vectors at the
pixels of an image. Pairs of feature vectors are trained to be
similar or different, depending on whether the correspond-
ing pixels belong to same or different ground truth segments.
To segment a new image, the feature vectors are computed
and clustered. Both empirically and theoretically, it is unclear
whether or when deep metric learning is superior to the more
conventional approach of directly predicting an affinity graph
with a convolutional net. We compare the two approaches
using brain images from serial section electron microscopy
images, which constitute an especially challenging example
of instance segmentation. We first show that seed-based post-
processing of the feature vectors, as originally proposed, pro-
duces inferior accuracy because it is difficult for the convolu-
tional net to predict feature vectors that remain uniform across
large objects. Then we consider postprocessing by threshold-
ing a nearest neighbor graph followed by connected compo-
nents. In this case, segmentations from a “metric graph” turn
out to be competitive or even superior to segmentations from
a directly predicted affinity graph. To explain these findings
theoretically, we invoke the property that the metric function
satisfies the triangle inequality. Then we show with an exam-
ple where this constraint suppresses noise, causing connected
components to more robustly segment a metric graph than an
unconstrained affinity graph.

Index Terms— Image Segmentation, Machine Learning,
Microscopy - Electron

1. INTRODUCTION

There have been several recent proposals to apply deep met-
ric learning to image segmentation [1} 2]. A convolutional
net generates dense feature vectors at the pixels of an image.
During training, pixels within the same ground truth object
should be assigned vectors that are nearby in feature space,
while pixels from different objects should be assigned well-
separated feature vectors. To segment a new image, the fea-
ture vectors are computed by the convolutional net, and then

H. Sebastian Seung

Princeton University

Department of Computer Science and Neuroscience

clustered. (The idea was also part of a more complex system
for detecting and correcting segmentation errors [3]]).

GT Labels

200 300 400

Vector Fields Generated Segmentation

Fig. 1. Test set example: Upper left: crop of input EM im-
age to network. Upper right: ground truth labels. Lower Left:
PCA-based visualization of vector fields. Lower right: con-
nected components segmentation derived from vector fields.

The deep metric learning approach is conceptually in-
triguing because it is a hybrid of semantic and instance seg-
mentation. Feature vectors can potentially encode semantic
information about the underlying objects. At the same time,
multiple instances of the same kind of object should be as-
signed distinct feature vectors. Deep metric learning has been
applied to natural images [} 2], but this is arguably not a
difficult test of instance segmentation. Many natural images
contain only a few objects, or a few instances of each object,
and instances are often well-separated in the image. Fur-
thermore, many instances of the same object class have very
different "low-level” features (shape, color, texture, etc.), and
therefore are not hard to differentiate ”semantically.”

As a more challenging test of instance segmentation, we
use neuronal images acquired by serial section electron mi-
croscopy (EM). An image of 400 x 400 pixels can contain a
rather large number of objects (more than 50 neuronal cross
sections). Furthermore, many objects have similar low-level
features (intensity, texture, shape) and assigning them distinct
feature vectors would seem to require encoding contextual in-
formation about surrounding objects. A state-of-the-art ap-
proach to this problem is to train a convolutional network to
directly predict affinities between nearest neighbor pixels, es-
sentially identifying the boundaries between objects, and then
partition the affinity graph [4}[5].

We start by showing that seed-based postprocessing
schemes proposed by [1, 2] yield low quality segmenta-
tions on this task, in large part because the vector fields do
not remain uniform over large distances. We then show that
using a simpler approach, connected components, on the
vector fields yields segmentations of far higher quality, sur-
passing even the scores of connected components on directly
predicted affinity graphs, which are the backbone of many
state-of-the-art segmentation pipelines [4} 5]

In the final section we provide an possible reason for the
improved performance of the vector-derived segmentations
over the affinity-derived segmentations. We show that con-
nected components on the vector fields is equivalent to con-
nected components on an affinity graph where the affinity
graph is constrained to satisfy the triangle inequality (called
a ’metric graph”). We then show an example where this con-
straint suppresses errors in an unconstrained affinity graph,
suggesting that connected components may be more robust
to effective on a metric graph than an unconstrained affinity
graph.

2. METHODS

We call a metric graph any weighted graph whose weights
satisfy the axioms of a metric. In our application the nodes
of the graph are pixels and the edges (typically nearest neigh-
bor) between pixels. We can derive an affinity graph from a
metric graph by simply inverting the signs of all the distances
between objects (i.e. affinity is the negative distance between
nodes). We note that general affinity graphs however cannot
always be derived from a metric graph. In particular, there is
no requirement that the affinities be consistent with the trian-
gle inequality. We show later that the additional requirement
that the edge weights be derived from a metric gives us some
theoretical properties that seem desirable for generating a seg-
mentation.

We use the concept of a metric graph to encode the notion
of locality. In particular, we will show that a network can
learn distances over short range edges much more accurately
than over long range edges. Using just the short range edges
allows us to generate more accurate segmentations than other
seed-based approaches

We represent our metric graphs using a vector at each
pixel and compute the edge weight between a pair of pixels
using the L1 norm between vectors. This ensures the edge
weight satisfies the triangle inequality.

2.1. Means-based loss function

We use convolutional networks to generate the vector fields.
We use the loss presented by [[1]] to train our networks. Briefly,
there are three terms: L = & Y. 7 2o lltte — vill%,

Leyr = ﬁ an,Cb:ca;ﬁCb max (20 — [|pe, — #’CbHﬂo)z’
Lyorm = % > e lleell, where v; is the vector for pixel i, p. is
the mean vector for object c, C is the number of objects, N,
is the number of pixels in object c, || - || is the L1 norm, d4
is the margin of the external loss (we only care if vectors are
further apart than some threshold). We compute the total loss
as:
L = Lint + Legt + 'VLnorm

We use an embedding dimension of 32, 44 = 1.5 and
v = 0.001. The authors in [1]] also had a margin in L;,;
but we found that removing this margin yielded smoother
vector fields within objects and did not hurt the networks
ability to minimize L.,;.

We observe that there may be two parts of an object that
appear to be separate objects in a given patch, but there ex-
ists a path connecting the two parts outside the patch under
consideration. We find that splitting objects in each training
patch if there is no path between them and then removing all
terms in L.,; between the newly formed split objects yields
better generalization performance than either training the net-
work to assign vectors to different object parts or ignoring the
complication all together.

2.2. Network architecture

We use a variant of the popular U-Net [6] architecture. It is
a fully convolutional network consisting of a downsampling
followed by upsampling path and uses skip connections along
the path. We modify the original architecture in 3 ways. One,
we use batch normalization [[7]] before each nonlinearity. We
use the dynamic variant of batch norm meaning at inference
time, we use the layer statistics for the particular image being
processed rather than the statistics averaged over the training
set. Two, we add one more level of resolution to the network
so our network consists of a total of 6 levels of resolutions.
This additionally increases the receptive field of our network
to approximately 400x400 pixels. Finally, we add additional
skip connections within the convolutional blocks at each res-
olution as done in [5]].

2.3. Dataset

We use EM brain images from the AC3 and AC4 datasets
[8]. We use a 1024x1024x256 stack for training and a

1024x1024x100 for testing. The labels are densely labeled
integer ids corresponding to the segmentation of the images.
The images are a superset of the popular SNEMI3D recon-
struction challenge where contestants attempted to generated
3D neuron reconstructions El Here we conduct all experi-
ments in 2D as it is simpler and our results should not be
fundamentally tied to the dimensionality of the dataset. An
image and label are shown in Figure[]

2.4. Training details

We sample a crop of size 924x924 from 1 section and com-
pute the loss as described above. We use the Adam optimizer
[9] with a learning rate of 0.001. We train each network for
about 50K iterations, taking approximately 20 hours on a sin-
gle NVIDIA Titan X Pascal GPU.

For comparison with state of the art methods, we ad-
ditionally train a second network using the same proce-
dure/architecture/augmentation but instead train it to directly
produce affinities between nearest neighbor pixels using the
cross entropy loss. [4,[3].

We apply standard augmentation procedures: random ro-
tations, flips, and rescaling. Additionally we apply elastic de-
formation augmentation as described in [6]. This applies a
low frequency Gaussian displacement field to the images and
labels, artificially enlarging the training set.

2.5. Visualization

For visualization, we project the vector fields onto the top 3
components given by principle components analysis (PCA)
[10] and visualize this projection as an RGB image. Examples
are shown in Figure[I]and Figure[2] A striking feature of this
visualization is that these projections look like segmentations
that would normally be obtained after some form of post-
processing. However, these are visualizations of the direct
output given by the CNN, with no additional post-processing
besides the PCA projection.

3. SEGMENTATIONS

We describe the segmentation and evaluation procedures be-
low. An example segmentation generated using connected
components on the vectors is shown in Figure|I]

3.1. Postprocessing

We partition our affinity graph by running connected compo-
nents on the nearest neighbor edges in the graph [11]. This
generates reasonable segmentations but tends to produce lots
of singleton labels near the objects of borders. To make eval-
uation fair between all methods, we label all singleton objects

ISNEMI3D is similar to the popular 2012 ISBI neuronal segmentation
challenge. We use this primarily because it is larger dataset.

Vector Fields

200

400

g 5 1000
0 200 400 600 800 1000 0 200 400 600 800 1000

Fig. 2. Left: Input EM image (red box contains section in
Figure[I). Right: PCA visualization of vector fields. Note the
nonuniformity in the vector fields in the largest neuron.

Rand Error Variation of Information

100

098

0.96

Merge

094
0.02

092 034 096 098 100 002 006 010 014
Split Split

Fig. 3. Segmentation Scores. Left: Rand F-Score. Right:
Variation of Information. Segmentation of the metric graphs
seems to yield significantly fewer merge errors.

as background and dilate all segments by up to 10 pixels to
reduce the amount of unlabeled pixels.

For the seed-based segmentation, we use the ground truth
object masks to generate mean vectors and simply connect
each pixel to the nearest mean vector. This should put a
rough upper bound on seed-based segmentation performance
(either for seeds predicted from a network [2] or seeds given
by MeanShift [1]). It was also empirically demonstrated []]
that this method performed better than MeanShift which does
not have access to ground truth labels.

3.2. Evaluation

We quantitatively evaluate the segmentations through two
metrics, the Rand F-Score, R, and the Variation of Informa-
tion, V, two popular metrics used to evaluate segmentation
of connectomic images [12]. Both metrics can be split into
merge and split scores which measure the degree to which
one splits and mergers affect the segmentation performance.
We do not evaluate any quantity on any pixel within 2 pixels
of a boundary in the ground truth. This is done to reduce the
sensitivity to the precise locations of the boundaries.

Figure [3] shows the scores of the connected component

segmentations on the affinity graphs. We observe that by both
metrics, the vector fields seem to provide better connected
components segmentations. We note that the improvement in
the merge scores are relatively larger than the improvement
in the split scores. As we argue in the following section, this
may be a result of the restriction on the affinity graphs that is
imposed by requiring the affinities be derived from a metric
graph.

Additionally we find that the scores for the seed-based
segmentation are far lower than the connected components
segmentations and they do not show up on the graphs. In
particular, the seed-based segmentation receives a Rand Score
of 0.71 and a VI Score of 0.59. This is largely due to the fact
that the vector fields are nonuniform within large objects (see
Figure 2, and this causes many split segments.

4. CONNECTED COMPONENTS ON A METRIC
GRAPH

By definition, any triplet of nodes ¢, j, k in a metric graph
must satisfy d;r, < d;; + d;i. This implies that not all affinity
graphs can be derived from a metric graph. However, for the
purposes of segmentation, we care primarily about a particu-
lar class of affinity graph: affinity graphs where the distance
between nodes can be written as d;; = 1 — §;;. Here d;; is
the Kronecker delta function and is 1 when ¢ and j are given
the same label and O otherwise. Clearly this is a metric (it is
non-negative, symmetric, satisfies triangle inequality, and O
iff 7 and j have the same label). Therefore an affinity graph
derived from a segmentation can always be represented by a
metric graph.

4.1. Approximating Affinity Graphs with Metric Graphs

Here we provide anexample which suggests that requiring a
learned affinity graph to satisfy the triangle inequality can
lead to improvements in the derived segmentation. Essen-
tially, we find a location where the affinity graph output by
our baseline network contains noise (not that it is not uncorre-
lated shot noise”, rather it is spatially distributed over many
pixels). This noisy affinity graph is inconsistent with an un-
derlying metric. Finding an approximating metric graph is
enough to remove this noise and fix an error in the resulting
segmentation. The results are shown in Figure[d]

More precisely, we trained a network to directly generate
affinities between sparsely sampled pixel pairs up to 32 pix-
els apart. This “long-range affinity prediction” is described
in [3]. This procedure is identical to the procedure used to
train our baseline direct affinity network except that it outputs
predictions over many pixel pairs. We only show the nearest
neighbor affinities in the vertical direction in the figure.

We then generate affinity graphs for all images in the test
set. We then find the connected components of the thresh-
olded nearest neighbor affinity graph. Two objects from the

test set are erroneously merged (red arrow) as shown in Fig-
ure @ Now we define a 3-element embedding vector at each
pixel and define the affinity between two vectors as e ~¢ where
d is the distance. We optimize the vectors to minimize the
squared error relative to the directly generated affinity graph.
Note that these vectors are not learned, rather they are de-
rived directly from the affinity graph. Taking only the nearest
neighbor edges of this regularized affinity graph, we thresh-
old and compute connected components, and the merge error
is eliminated. This example is anecdotal, but it does illustrate
the principle that merely representing affinities using embed-
ding vectors can clean up errors in an affinity graph, even if
those embedding vectors are not generated by a neural net.

Network
Y-affinities

EM image

Fit Vectors
L B

S FE G E B R
J Segmentation
Segmentation etwork

Fig. 4. Example from the test set where requiring the pre-
dicted affinity graph to satisfy the triangle inequality can im-
prove the resulting segmentation.

Intuitively what happened in this example was the net-
work erroneously predicted “merge” affinities on the left side
of the merged objects and correctly predicted ’split” affini-
ties on the right side. Additionally, the network correctly pre-
dicted “merge” affinities between the left and right sides of
each object. This resulted in an inconsistent affinity graph.
Fitting vectors to this affinity graph in the manner prescribed
required that the vector-based affinities were consistent with
the triangle inequality and doing this required some sort of
averaging of predictions to fit the vectors.

This research was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of In-
terior/ Interior Business Center (Dol/IBC) contract number
D16PC0005. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Dis-
claimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of TARPA, Dol/IBC, or the U.S.
Government.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

5. REFERENCES

Bert De Brabandere, Davy Neven, and Luc Van Gool,
“Semantic instance segmentation with a discriminative
loss function,” CoRR, vol. abs/1708.02551, 2017.

Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng
Wang, Hyun Oh Song, Sergio Guadarrama, and Kevin P.
Murphy, “Semantic instance segmentation via deep met-
ric learning,” CoRR, vol. abs/1703.10277, 2017.

Jonathan Zung, Ignacio Tartavull, Kisuk Lee, and H. Se-
bastian Seung, “An error detection and correction
framework for connectomics,” in Advances in Neural
Information Processing Systems 30, 1. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, Eds., pp. 6818-6829. Curran
Associates, Inc., 2017.

Srinivas C. Turaga, Joseph F. Murray, Viren Jain, Fabian
Roth, Moritz Helmstaedter, Kevin Briggman, Winfried
Denk, and H. Sebastian Seung, ‘“Convolutional net-
works can learn to generate affinity graphs for image
segmentation,” Neural Computation, vol. 22, no. 2, pp.
511-538, 2010, PMID: 19922289.

Kisuk Lee, Jonathan Zung, Peter Li, Viren Jain,
and H. Sebastian Seung, “Superhuman accuracy on
the SNEMI3D connectomics challenge,” CoRR, vol.
abs/1706.00120, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” CoRR, vol. abs/1505.04597, 2015.

Sergey loffe and Christian Szegedy, ‘“Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift,” CoRR, vol. abs/1502.03167,
2015.

Narayanan Kasthuri, KennethJeffrey Hayworth,
DanielRaimund Berger, RichardLee Schalek, JosAn-
gel Conchello, Seymour Knowles-Barley, Dongil
Lee, Amelio Vzquez-Reina, Verena Kaynig, Thouis-
Raymond Jones, Mike Roberts, JoshLyskowski
Morgan, JuanCarlos Tapia, H.Sebastian Seung,
WilliamGray Roncal, JoshuaTzvi Vogelstein, Randal

Burns, DanielLewis Sussman, CareyEldin Priebe,
Hanspeter Pfister, and JeffWilliam Lichtman, “Satu-
rated reconstruction of a volume of neocortex,” Cell,

vol. 162, no. 3, pp. 648 — 661, 2015.

Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” CoRR, vol. abs/1412.6980,
2014.

Jonathon Shlens, “A tutorial on principal component
analysis,” CoRR, vol. abs/1404.1100, 2014.

(11]

[12]

Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin
Yao, and Yuyan Chao, “The connected-component
labeling problem: A review of state-of-the-art algo-
rithms,” Pattern Recognition, vol. 70, pp. 25 — 43, 2017.

Ignacio Arganda-Carreras, Srinivas C. Turaga,
Daniel R. Berger, Dan Ciresan, Alessandro Giusti,
Luca M. Gambardella, Jirgen Schmidhuber, Dmitry
Laptev, Sarvesh Dwivedi, Joachim M. Buhmann, Ting
Liu, Mojtaba Seyedhosseini, Tolga Tasdizen, Lee
Kamentsky, Radim Burget, Vaclav Uher, Xiao Tan,
Changming Sun, Tuan D. Pham, Erhan Bas, Mustafa G.
Uzunbas, Albert Cardona, Johannes Schindelin, and
H. Sebastian Seung, “Crowdsourcing the creation of im-
age segmentation algorithms for connectomics,” Front
Neuroanat, vol. 9, pp. 142, Nov 2015, 26594156[pmid].

	1 Introduction
	2 Methods
	2.1 Means-based loss function
	2.2 Network architecture
	2.3 Dataset
	2.4 Training details
	2.5 Visualization

	3 Segmentations
	3.1 Postprocessing
	3.2 Evaluation

	4 Connected Components on a Metric Graph
	4.1 Approximating Affinity Graphs with Metric Graphs

	5 References

