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Abstract

The analysis of medical image time-series is becoming increasingly important as longitudinal 

imaging studies are maturing and large scale open imaging databases are becoming available. 

Image regression is widely used for several purposes: as a statistical representation for hypothesis 

testing, to bring clinical scores and images not acquired at the same time into temporal 

correspondence, or as a consistency filter to enforce temporal correlation. Geodesic image 

regression is the most prominent method, but the geodesic constraint limits the flexibility and 

therefore the application of the model, particularly when the observation time window is large or 

the anatomical changes are non-monotonic. In this paper, we propose to parameterize 

diffeomorphic flow by acceleration rather than velocity, as in the geodesic model. This results in a 

nonparametric image regression model which is completely flexible to capture complex change 

trajectories, while still constrained to be diffeomorphic and with a guarantee of temporal 

smoothness. We demonstrate the application of our model on synthetic 2D images as well as real 

3D images of the cardiac cycle.

1. INTRODUCTION

Image regression serves a prominent role in many medical image analysis frameworks. It 

may be used as a statistical representation of change over time, either cross-sectionally, or 

for subject specific change trajectories to be integrated into a longitudinal modeling scheme. 

Regression is also essential in estimating continuous trajectories, allowing sampling at 

arbitrary time points for age matching, or matching based on disease progression or other 

clinical scores. Regression can also be an used for enforcing time consistency across 

observations, which is an essential filtering routine for measurements with significant noise 

[1, 2].

The most widely adopted image regression method is based on a geodesic path on the 

manifold of diffeomorphisms [3, 4]. While linear in the space of diffeomorphisms, the 

model is nonetheless capable of capturing large nonlinear changes while guaranteeing 

desirable anatomical properties such as topological consistency and invertibility. However, it 

is generally hypothesized that geodesic models are only accurate over short time intervals. 

The geodesic model may not be a good approximation of highly accelerated and saturating 

growth characterized by early childhood development from birth, and is not capable of 

modeling more complex non-monotonic changes, as observed in cardiac imaging for 

example. In this case, more flexible or higher order models are needed when the geodesic 

constraint is too restrictive.
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Higher order models have also been proposed, such as the extension of kernel regression to 

images [5], which has the flexibility to model arbitrary image change over time. However, 

since kernel regression is based on weighted averaging, a relatively dense sampling across 

time is required, as there is no underlying growth model to inform trajectories between 

observations. This makes kernel regression more suited to large cross-sectional populations 

and limits its applicability for subject-specific modeling with sparse sampling over time. 

Another promising higher order regression model proposed extending splines to the 

manifold of diffeomorphisms [6]. Results demonstrate that the model captures non-

monotonic shape change, but is limited to capturing one inflection and therefore cannot 

model generic trajectories. The method further assumes a fixed initial image, and 

experimentation appears limited to 2D slices.

In this paper, we develop a flexible nonparametric diffeomorphic image regression model. 

The main idea is to parameterize flows of diffeomorphisms by acceleration rather than 

velocity, first introduced in the context of shape regression in [7]. As a consequence, image 

trajectories are defined to be twice differentiable by the relationship between acceleration, 

velocity, and position from classical mechanics, guaranteeing smooth image evolution. 

Following the work of [8], we adopt a sparse parameterization of diffeomorphisms based on 

a set of control points in the ambient space, which decouples deformation vectors from the 

voxel grid of the image. In addition to extending [7] to images, we further improve the 

model in several ways, including estimation of the initial image, estimation of the optimal 

location of the control points, and we introduce a new regularity term on initial velocity. We 

show that in a discretized setting the acceleration controlled model can be defined by a finite 

number of parameters, and we present an efficient solution to model estimation based on a 

regularized least-squares criterion. Finally, we validate our model on synthetic 2D images as 

well as a dynamic sequence of 3D CT of the cardiac cycle.

2. METHODOLOGY

We define an acceleration field at location x and time t as

ai x, t =
i = 1

NC
KV x, ci t αi t (1)

where a sparse set of NC control points ci(t) carry impulse vectors αi(t) and smooth kernel 

operator K induces the structure of the reproducing kernel Hilbert space V (K is a Gaussian 

in practice with standard deviation σV
2 ). The relationship between impulse and acceleration is 

analogous to the relationship between momenta and velocity in the large deformation 

diffeomorphic framework [9]. A flow of diffeomorphisms of the ambient space is 

parameterized by the time varying acceleration fields defined by the second order ODE

ϕ̈ x t , t = a x t , t (2)

with initial velocity v0 = v(t0) and initial position x0 = x(t0). Solving Eq. 2 generates a flow 

of diffeomorphisms starting from identity ϕ(0) = Id, which carries a particle at initial 
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position x(t0) to x(T). Given an initial distribution of control points ci(0), the full trajectory 

of the control points can be computed by solving Eq. 2, giving the continuous path ci(t). 
Likewise, the physical coordinates of image voxels also evolve according to Eq. 2, starting 

from an initial image configuration I0. For notational convenience, let α(t), v0, and c0 be the 

concatenation of the αi(t)’s, vi(0)’s, and ci(0)’s.

Given a set of image observations Iti
 in time range t0 to T, model estimation consists of 

determining time varying impulse α(t), initial velocity v0, initial control point positions c0, 

and initial image I0 which minimizes

E α t , v0, c0, I0 =
i = 1

N
d ϕti

∘ I0, Iti

2
+ γA t0

T
a t V

2 + γv0
v0

2
(3)

where d is a distance metric between images, normalized cross-correlation in our 

implementation, γA weights the regularity of the time-varying acceleration, and γv0
 weights 

the regularity of initial velocity. Other reasonable choices for d are root mean squared error 

or mutual information.

The proposed model is nonparametric given that there are essentially an infinite number of 

parameters, since we must solve for a continuous function of time α(t). However, in practice 

we discretize time into Nt time-steps, resulting in NC ∗ Nt impulse vectors to be estimated. 

We implement a gradient descent scheme; given current estimates of model parameters, each 

iteration goes as follows. First, solve equation Eq. 2 to obtain the continuous trajectory of 

control points c(t). Next, time-varying acceleration vectors can be computed at physical 

image coordinates by Eq. 1, and the trajectory of image coordinates can be computed by 

solving Eq. 2. A continuous image sequence can be constructed by interpolation in the initial 

image I0, which can be used to compute residuals with respect to d at time points 

corresponding to observations Iti
. All gradients are computed using autograd in PyTorch 

[10]. For solving the second order ODE Eq. 2, we use the velocity Verlet algorithm given 

initial velocity v0, which is a 2nd order leapfrog integration scheme. Our implementation is 

available at https://github.com/jamesfishbaugh/acceleration-diffeos.

3. EXPERIMENTAL VALIDATION

Synthetic Bull’s-eye:

We first validate our image regression model on a 2D synthetic image sequence of an 

evolving bull’s-eye. The outer ring first decreases in size linearly, and then linearly increases 

to its original size. The inner circle grows exponentially, and then decreases exponentially to 

its original size. The sequence is perfectly symmetric, i.e. t1 = t5 and t2 = t4. The images are 

blurred with a small Gaussian kernel to create smooth edge transitions. The synthetic 

sequence is shown in the top row of Fig. 1.

We estimate a geodesic model using deformetrica [11] as well as a model using our 

proposed acceleration controlled method. For both methods, we choose σV = 10 pixels and 
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choose regularity parameters to normalize the contribution of the data-matching term 

between methods. The geodesic model is unable to capture non-monotonic shape change 

and is therefore a poor fit, with an R2 = ‒0.42 indicating that a simple voxelwise average 

over time would be a better fit. In contrast, our nonparametric model has the flexibility to 

match the observations, achieving an R2 = 0.99. Indeed, with synthetic noise free 

observations our method tends towards interpolation. In practice, this has important 

implications regarding over-fitting of noisy observations, which we will discuss in the 

conclusion.

4D Cardiac CT:

Next, we explore the ability of our model to capture complex shape change and motion 

during the cardiac cycle. We obtain a dynamic 4D cardiac CT sequence from http://

www.osirix-viewer.com image library (MAGIX), which contains ten 3D volumetric images 

captured during the cardiac cycle. For memory and computational efficiency, we crop to a 

smaller region, but we do not perform any preprocessing such as motion correction, noise 

reduction, or intensity normalization. The top row of Fig. 2 shows several axial slices of the 

cardiac sequence.

As with the synthetic example, we use a common value of σV = 12 mm for a geodesic model 

as well as our acceleration controlled model, and choose regularity weights to allow for a 

fair comparison between methods. Both models are estimated fully in 3D, though we only 

show axial slices here for visualization purposes. The middle row of Fig. 2 shows the trend 

estimated by geodesic regression. Overall, the model contains very low energy deformation, 

as the best the geodesic model can do to minimize sum of square error is to stay close to the 

average. The bottom row shows the estimated acceleration controlled model, which captures 

complex patterns of contraction and expansion of internal structures of the heart. The 

differences between models are difficult to convey with static images, it is recommended to 

zoom the figure and use the grid overlay as a visual guide which helps inform the magnitude 

of structural change. Readers are highly encouraged to view animations of geodesic (https://

goo.gl/Y7W53K) and acceleration controlled (https://goo.gl/ZHFSJy) models for a more 

intuitive understanding of the results.

Fig. 3 shows the typical error in reconstruction for a couple of time points in the form of 

difference images. All difference images are scaled to the same intensity values (and contrast 

artificially enhanced for visualization purposes), with bright areas denoting the highest 

disagreement with the ground truth observation. In general, the acceleration controlled 

model matches the observations more accurately over the time range, which is most notable 

around the exterior of the heart and at the edges of the internal heart structures.

4. CONCLUSION

Geodesic regression models have become ubiquitous in the analysis of image time-series. 

However, when the observation time window is large or shape change is non-monotonic, the 

geodesic constraint may be too restrictive to accurately model the underlying structural 

change. In this paper, we propose a higher order nonparametric image regression model 

based on parameterizing diffeomorphic flow by acceleration, which defines growth 
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trajectories by the integration of a second order ODE as in classical mechanics. As a 

consequence, our model is completely flexible to capture complex non-monotonic change 

patterns while still constrained to diffeomorphic flow and temporally smooth evolution. 

However, due to our model’s flexibility, avoiding overfitting and model selection becomes 

quite challenging as one can increase the model fit by either decreasing the weights on 

regularity, or by lowering the convergence criteria of gradient descent. There is some 

preliminary work on model selection in the case of shape observations [12], but parameter 

selection and model selection remain open issues. Finally, we showed on synthetic and real 

3D medical images that our acceleration controlled model accurately captures complex 

structural changes.
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Fig. 1. 
Top) Synthetic bull’s-eye image sequence. Middle) Images estimated from geodesic 

regression. Bottom) Images estimated with our nonparametric image regression model.
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Fig. 2. 
Top) Several frames of axial slices from 3D CT of the cardiac cycle. Estimated dynamic 

heart sequence by geodesic (middle) and acceleration controlled (bottom) regression. The 

acceleration controlled model captures complex non-monotonic change while the geodesic 

model shows relatively little change in order to stay close to the average. It is highly 

encouraged to view animations of geodesic (https://goo.gl/Y7W53K) and acceleration 

controlled (https://goo.gl/ZHFSJy) models for a more intuitive understanding of the results.
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Fig. 3. 
Difference images between ground truth observations and images estimated by geodesic 

(top) and acceleration controlled regression (bottom).
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