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ABSTRACT

Chronic Pulmonary Aspergillosis (CPA) is a complex lung
disease caused by infection with Aspergillus. Computed to-
mography (CT) images are frequently requested in patients
with suspected and established disease, but the radiological
signs on CT are difficult to quantify making accurate follow-
up challenging. We propose a novel method to train Convo-
lutional Neural Networks using only regional labels on the
presence of pathological signs, to not only detect CPA, but
also spatially localize pathological signs. We use average in-
tensity projections within different ranges of Hounsfield-unit
(HU) values, transforming input 3D CT scans into 2D RGB-
like images. CNN architectures are trained for hierarchical
tasks, leading to precise activation maps of pathological pat-
terns. Results on a cohort of 352 subjects demonstrate high
classification accuracy, localization precision and predictive
power of 2 year survival. Such tool opens the way to CPA
patient stratification and quantitative follow-up of CPA patho-
logical signs, for patients under drug therapy.

Index Terms— Lung CT, Chronic Pulmonary Aspergillo-
sis (CPA), Sparse Annotation, Pathological Signs Localiza-
tion, Convolutional Neural Networks,

1. INTRODUCTION

Chronic Pulmonary Aspergillosis (CPA) is caused by infec-
tion with Aspergillus species, which are ubiquitous in nature.
CPA most often occurs in patients with pre-existing lung dis-
ease. Predisposing host systemic for the development of CPA
include diabetes, alcoholism, a low body mass index and can-
cer. Typical patients with CPA have non-specific insidious
symptoms for over 3 months including weight loss, cough,
occasional haemoptysis and low-grade fever. On imaging,
disease is most frequent in the upper lobes and involves patho-
logical signs such as consolidation, cavity formation, volume

loss and striking pleural thickening [1]. Ancillary signs on CT
include nodules, large airway mucus plugging and a tree-
in-bud” pattern, the latter reflecting inflammation in the pe-
ripheral airways. Multiple recent approaches exploit convo-
lutional neural networks (CNNs) and transfer learning to learn
pathological signs on lung CT scans [2]. Given the chal-
lenge of manually annotating voxel-wise (or even slice-wise)
3D volumes of images, it is of value to train CNN label-
ers on whole volumes with binary labels only (diseased/non-
diseased), while being able to feedback to the user the spatial
locations that were used to make the labeling decision. As
CT volumes are too large to fit on common GPUs, most ap-
proaches either work on downsampled 2D slices or 3D/2D
patches, like [3]. We chose to test an alternative radical im-
age simplification strategy, projecting 3D volumes into 2D
images. The rationale for using such strategy is five-folds:
(1) Require whole-scan labels only; (2) Use an image simpli-
fication scheme similar to the maximum intensity projections
popular for some visualization tasks; (3) Test CNN capacities
to infer fine diagnostic tasks on projected image data, mimick-
ing radiologists capabilities when reviewing 2D lung X-rays;
(4) Exploit the plethora of available CNN architectures pre-
trained for 2D image classification and labeling, while using
deep network architectures; (5) Reduce the ratio of patholog-
ical signs to other lung tissues, and improve the balance in the
training data.

1.1. Data

A retrospective cohort of 352 high-resolution CT studies from
172 patients was collected under an ethically-approved study
protocol. The CT scans were acquired at full inspiration, us-
ing 120 kVp, axial pixel size between 0.44mm and 0.9mm
and slice thickness between 0.5mm and 1.0mm. Working
with the lowest pixel resolution of 0.9mm and slice thickness
of 1mm, our CT scans consist, on average, of 512 x 512 x 432



pixels. The cohort includes 76 control studies, without any
underlying lung disease and 276 studies with signs of CPA,
taken from N=96 patients who had between 1 and 8 longitudi-
nal CT scans acquired over a period of 12 years. Pre-existing
(non-exclusive) lung diseases in this cohort are: 112 cases
with consolidation, 86 cases with bronchiectasis, 66 cases
with emphysema, 39 cases with sarcoidosis, 38 cases with
signs of ground glass opacities, 26 cases with cystic fibrosis
and 31 cases with a disease not in this list. The three patho-
logical signs of CPA being studied in this work and illustrated
in Fig. [3are: cavities, fungus balls and pleura thickening.

1.2. CT scan manual annotation

All CPA CT scans were visually inspected by an expert radi-
ologist and sparsely annotated by dividing each CT scan into
6 sub-regions (left and right upper/middle/lower regions) and
indicating, for each sub-region, if any of the three pathologi-
cal signs and if a pre-existing lung condition could be identi-
fied. Each CT scan is therefore equipped with 6 one-hot en-
coded vectors of length 4 containing, the manual annotation
on the presence or absence of any pre-existing lung condi-
tion and each of the 3 pathological signs being studied. Oc-
currences, in our cohort, of CPA pathological signs per sub-
regions are detailed in Table[1] We see that CPA pathological
signs occur most often in the upper lung, which creates some
imbalance between sub-regions.

Table 1: Occurrences of pathological signs in our cohort of subjects
with CPA (N=276 studies and 1,656 sub-regions).

# scans Cavities thfcll?elrll‘?ng Fz:ﬁss

(left |right)

Upper lung 172 ] 121 169 | 143 119143

Middle lung 33|15 128 14110

Lower lung 5]15 813 319
2. METHOD

The pipeline of the proposed framework is displayed in Fig.
and includes two distinct classification tasks: (1) whole-scan
binary CPA disease classification and survival prediction; (2)
sub-regions pathological signs labeling.

2.1. Lung segmentation

For the binary disease classification/survival prediction tasks,
we used a conservative approach, thresholding the voxels
at -570 HU and using morphological closing and opening
operations to create smooth lung masks that contain lung
parenchyma and air. To further include pathological signs
such as fungus balls and pleura-thickening, we refined the
approach from [4] and [5]]. First, we define a set of markers.
To do so, pixels are thresholded at -570 HU and connected

components are extracted, while removing the smallest ones.
These connected components provide internal markers. Then,
we define intermediate and external markers, via morpholog-
ical dilation of internal markers with structuring elements of
radius 10 and 35 pixels, respectively. These markers define
the spatial extent of the region where lung tissues can be
added to the threshold-based segmentation. To find the lung
structures to add, a watershed segmentation (Fig. is used,
with seeds generated with a Sobel-filter edge map. It returns
large homogeneous connected regions but still excludes some
diseased structure with soft-tissue like attenuation values. A
top-hat transform (Fig. is used, where the occluded region
is initially morphologically closed and then the difference be-
tween the original and the closed structure is added to the
watershed mask. The final segmentation mask (Fig. [2d) is
generated after closing the remaining holes.

2.2. 2D average intensity projections

We use average intensity projections within the segmented
lungs to capture 3D pathological signs in 2D images. Since
the pathological signs of interest exhibit different attenua-
tion levels (air cavities, normal lung parenchyma, soft tis-
sue), we sub-divided attenuation values into three ranges, to
create three RGB-like channels, using: [-1,400HU, -900HU]
(air-like range), [-900HU,-160HU] (lung range), [-160HU,
240HU] (soft-tissue range). Similar partitioning of attenu-
ation values was used in [6] to classify 6 subtypes of lung
disease.

2.3. CT projection and augmentation

The scans were all rescaled to 512 x 512 x 432 pixels and
downsampled by 2 in each direction. To handle the imbal-
ance issues, we augmented our cohort by rotating each scan
in 3D by +5 degrees around each axis, i.e. 27 rotations in
total. For the binary disease classification/survival prediction
tasks, each scan was projected along the three orthogonal axis
leading to three gray-scale projection images. Intensities in
projection images were rescaled to [0,1]. For the sub-region
labeling tasks, each scan was subdivided into 6 sub-regions
of size 256 x 128 x 72 voxels. Each sub-region was pro-
jected along the three orthogonal axes and within the 3 ranges
of HU values, leading to three color projection images. In-
tensities within each channel in the projection images were
rescaled to [0,1]. Finally, the projection images were ran-
domly rotated by +20 degrees and randomly scaled between
80% and 120% of their original size, which resulted in sev-
eral 100,000 of train/test/validation 2D images. To get more
reliable measurements of the networks’ generalization perfor-
mance, train and test subsets were split by patients, such that
a given patient cannot occur in both sets. To avoid any bias
of the network towards one class, train and test subsets were
balanced after the split.
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Fig. 1: Pipeline of SAPSAM framework: (1) binary disease classification and survival prediction on whole-scan projections along each axis;
(2) Sub-regions pathological signs labeling using different attenuation ranges in RGB-like channels.

2.4. CNN architectures

We trained the VGG19 [[7] and InceptionV3 [8] architectures
for binary disease classification on all 3 projection directions,
resulting in 12 CNNs. With the VGG19 architecture perform-
ing best for this task, we only experimented with this archi-
tecture for pathological signs detection in all 3 projection di-
rections, leading to 9 CNNss ( for 3 pathological signs), and 21
CNNss trained in total. For both architectures, we loaded the
pre-trained weights from the ImageNet competition and dis-
carded the final fully-connected layer, which was optimized
to label 1,000 classes from ImageNet. We replaced it with 2
fully connected layers of size 1, 024 x 1 x 1, where the weights
were randomly initialized by sampling from a Gaussian dis-
tribution with biases set to 0. Both layers use a rectified linear
activation function and a dropout between them of 0.5. The
output layer was set to a fully connected layer with 2 outputs
using the softmax function for the final output activation.
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Fig. 2: lllustrations of the segmentation of the lung area

For the survival prediction task, the VGG19 CNN archi-
tecture optimized for the binary disease classification task was
used as a base model. The last two fully-connected layers
were reset to a random state, and re-trained.

2.5. PSAMs - 3D Pathological Sign Activation Maps

We use the concept of gradient-weighted class activation
maps (grad-CAM) by Selvaraju et al. [9], to visualize re-
gions with high activations of the softmax outputs for the
pathological signs classes. They are based on the idea that
convolutional layers develop localization capabilities of ob-
jects they were trained on, as initially suggested in [10].
Mathematically, for a specific target class ¢, we note y° as the
final labeling score and A* | k € {1,...,n} as the feature
maps of the final convolutional unit. The grad-CAM L€ for
class c is defined:

= ReLU ZakAk | af = 7 ZZ 5A’“

=1 j=1

where A¥ € R*XV and Z € R. The output of the linear com-
bination of the weight parameters o, and the feature maps Ak
is rectified so that only the feature maps that have a positive
influence on the target class c are visualized. We evaluate if
the grad-CAMs can yield accurate spatial localization infor-



mation from CNNs trained for pathological signs labeling on
intensity projections of lung sub-regions.

3. RESULTS

3.1. Binary disease classification

We achieved the best generalization performance on N=822
axial projections from the test set with precision=97.4%,
recall=94.8% and F,-score=96%, measured on the categor-
ical cross-entropy loss over balanced subsets. The Incep-
tionV3 had slightly inferior test results in our experiments
(precision=95.8%, recall=93.6% and F;-score=94.7%.
The best VGG19 model architecture uses the following hy-
perparameters: optimizer = Stochastic Gradient Descent,
momentum = 0.9, learning rate = 104, frozen layers = the
first two blocks, batch size = 32, epochs = 60, callbacks =
checkpoint evaluated on the validation data, rotation factor
=20 degrees , zoom factor = 0.1.

3.2. Sub-regions disease sign labeling

The best optimizer, according to the categorical cross-entropy
loss function from the VGG19 network, was obtained using:
optimizer = Stochastic Gradient Descent, momentum = 0.9,
learning rate = 10~%, frozen layers = first two blocks, batch
size = 32, epochs = 240-300, callbacks = checkpoint eval-
uated on the validation data, rotation factor = 20 degrees,
zoom factor = 0.1. After balancing, we used 13,000 training
and 3,300 testing projection images. Labeling test-scores are
reported in Table 2]

Table 2: Test scores (%) of region-based labeling of pathological
signs on Axial |Coronal |Sagittal projections.

Labeling Task Precision Recall

Cavities 89.2 |85.3(86.3 | 90.0 |88.5|87.5
Fungal ball 86.3 84.2 182.0 | 81.9|80.4|76.3
Pleura thickening | 90.6 |91.5 |78.1 | 95.2(92.7 |82.5

Test scores are best or close to best using axial views, for
the three pathological signs. We illustrate in Fig. [3| two axial
Grad-CAM activation maps, where We illustrate in Fig. [|two
axial Grad-CAM activation maps. In both figures, an original
CT slice from a CPA patient is shown along with the gradient
weighted activation map from the corresponding sub-region.
We can observe that locations of maximum activation match
very well with actual locations of pleura thickening and fun-
gus balls.

3.3. Survival prediction

We tested the extension of the binary disease classifier to pre-
dict survival of CPA patients within 2 years from scanning
time. To do so, we gathered the following scans from a subset

of (N=143) CPA subjects: For (N=43) dead CPA subjects, we
gathered all the CT scans that had been acquired within the
preceding two years. We assigned a positive label to all these
CT scans. For (N=100) CPA subjects, we gathered all scans
that were acquired more than 2 years prior to the date of an-
notation, and assigned those cases a negative label. This lead
to N=765 projections, divided into (N=510) training cases
and (N=255) testing cases, without overlap of subjects be-
tween the two sets. No validation set was used, due to the
small sample size available. The model was trained for 20
epochs as more epochs led to over-fitting. We achieved the
following test-scores: precision=81.7%, recall=83.6% and
F-score=82.6%.

4. CONCLUSION

We propose an original deep-learning framework for lung CT
scans, trained using only sparse (approximate) annotations of
disease state and presence of pathological signs, to enable dis-
ease classification, pathological signs localization and 2-year
survival prediction. One original component is the use of av-
erage intensity projections of segmented lung tissue to cap-
ture 3D contextual information in 2D, while limiting compu-
tational complexity. Future work will focus on 3D positioning
of the detected pathological structures.

Fig. 3: Localization of pathological signs using axial projections on
CPA subjects with pleura thickening (top) and a fungus ball (bot-
tom). The original axial slice (left) and the overlaid grad-CAMs
(right) are shown.
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