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ABSTRACT 

 

We present ESCELL, a method for developing an emergent 

symbolic language of communication between multiple 

agents reasoning about cells. We show how agents are able 

to cooperate and communicate successfully in the form of 

symbols similar to human language to accomplish a task in 

the form of a referential game (Lewis’ signaling game). In 

one form of the game, a sender and a receiver observe a set 

of cells from 5 different cell phenotypes. The sender is told 

one cell is a target and is allowed to send one symbol to the 

receiver from a fixed arbitrary vocabulary size. The receiver 

relies on the information in the symbol to identify the target 

cell. We train the sender and receiver networks to develop 

an innate emergent language between themselves to 

accomplish this task. We observe that the networks are able 

to successfully identify cells from 5 different phenotypes 

with an accuracy of 93.2%. We also introduce a new form 

of the signaling game where the sender is shown one image 

instead of all the images that the receiver sees. The networks 

successfully develop an emergent language to get an 

identification accuracy of 77.8%. 

 

Index Terms— symbolic deep learning, emergent 

languages, referential games, multi-agent communication, 

cell classification 

 

1. INTRODUCTION 

 

Mainstream deep learning approaches are hard to interpret. 

This is because deep learning relies on feature 

representations in continuous high dimensional spaces that 

are difficult for humans to comprehend. Human language is 

the communication channel through which people 

understand and cooperate with each other. The protocols for 

communication have been developed for thousands of years 

and each population has given rise to their own set of 

languages that have emerged out of the necessity for social 

collaboration among human agents. In this work, we 

introduce the idea of emergent languages between artificial 

agents to collaborate on understanding the nature of cell 

biology. In particular, we work with a dataset consisting of 

cells stained with 4 different markers – CD3, CD20, CD68 

and Claudin1. In addition, we have cells that do not stain for 

any of the 4 markers. Therefore, in total we have a set of 5 

concepts that are categorized by their phenotypical 

characteristics. A coherent language in the form of symbols 

is observed to be emergent from a referential Lewis’ 

signaling game [1]. Understanding the language of cells in 

this manner, will help us understand biology in a symbolic 

manner and it can be used as another vehicle for scientific 

discovery. 

 

The method is based on research involving multi-agent 

coordination communication games. The agents in such 

games start as tabula rasa, but through the constraints of the 

game, they can infer knowledge about the game world 

leading to the emergence of an artificial symbolic language. 

The symbols generated from our emergent language 

framework (ESCELL) show that the agents are able to 

collaborate on the referential game. This is because, the 

agents associate different cells to different phenotypes.  

 

Deep learning approaches for classification or segmentation 

do not provide implicit methods for probing and 

understanding how they make predictions and decisions. 

This makes it difficult for them to be adopted reliably for 

making important decisions in healthcare. Our approach of 

using emergent languages can lead the way to make neural 

networks more transparent and help medical practitioners 

trust artificial systems to aid them in making conclusions on 

diagnosis and prognosis of diseases. Moreover, this work 

can be extended to ground the emergent language in natural 

human language for further interpretability of deep learning 

models. 

 

2. PREVIOUS WORK 

 

This framework is inspired by Lazaridou et. al [2], where 

they introduce the idea of using referential games for multi-

agent cooperation and show emergence of artificial 

language. They also discuss ideas to ground the symbols in 

natural languages. Havrylov et al. [3] extend these ideas to 

incorporate a sequence of symbols to further approximate 

sentence formation in emergent languages. The sequence of 

symbols is modelled using a type of recurrent neural 

network called LSTMs. They also consider introducing 

elements of natural language priors in the models using 

captions. Cogswell et al. [4] introduce compositional 

generality in the emergent languages among multiple agents. 
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Larazidou et al. [5] present a series of studies investigating 

the properties of the protocols from the language generated 

by the agents, who are exposed to symbolic and image data. 

In this work, we make an attempt to formulate and extend 

the ideas of emergent language communication to come up 

with a method for generating an emergent language of cells. 

 

3. DATA 

 

A hyperplex immunofluorescence microscopy platform 

(Cell DIVETM) is used in this work. It allows subcellular 

imaging of over 60 markers in a single 5m formalin fixed 

paraffin embedded (FFPE) tissue section [6]. It involves 

multiple sessions of staining, imaging and signal 

inactivation, illumination correction, registration and 

autofluorescence removal.  

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

Fig. 1: Color images for immune cell markers for CD20 (red), CD3 (green), 
and Nuclei DAPI (blue). 

 

We use a colon cohort in this analysis whose collection 

methods and details are provided in [6]. In this work, we use 

4 cell markers – CD3, CD20, CD68 and Claudin1. In 

addition, we also use cells that don’t stain positive for any of 

the 4 markers as a control group. Seven statistical intensity 

and shape based features are extracted from each cell 

marker encoding the information relevant to each marker. 

This makes it a total of 28 features – 1 set of 7 features for 

each of the 4 markers.  

 

4. METHODS 

 

ESCELL consists of a single symbol communication game 

where two agents play the Lewis’ signaling referential 

game. The game is structured as follows.  

 

1. There is a set of vectors representing the cells {v1, v2, …, 

vN}. K vectors {u1, u2, …, uK} are drawn at random from 

each of the K different concepts. One of them ut is 

chosen to be a target t  {1, 2, …, K} 

2. The sender network sees the set of K sampled images 

and generates a symbol from a vocabulary of size V. 

3. The receiver network, oblivious of the target ut, sees the 

sender’s symbol and a random permutation of the K 

sampled images and tries to guess the target image. 

4. Both the sender and receiver networks are rewarded for 

the correct guess, and penalized in case of a wrong 

answer. 

 

This framework is inspired by Lazaridou et al. [2]. This is 

denoted as Experiment 1 in the results shown in Section 5. 

In addition to this setup, we also perform experiments with 

the setup used by Havrylov et al. [3]. Here, instead of 

showing all the K-1 distractor images to both the sender and 

receiver, the sender only sees the target image. This is 

denoted as Experiment 2, which is more challenging and 

realistic than Experiment 1. The symbol generated by the 

sender in step 2 of the framework requires sampling over the 

vocabulary. Sampling is not a continuous function and 

therefore, gradient computation and backpropagation are not 

possible. Using reinforcement learning is a possibility. 

However, training becomes much harder in that case. 

Instead, Gumbel softmax [7] estimators are used in place of 

sampling to allow for end-to-end differentiation. The 

methodology is shown in the following figure. 

 

 
 

 

 
 

 

 

 
 

 

 

 

 
 

 

Fig. 2: ESCELL framework. A target cell is shown to the sender which is 

encoded as a neural network. The sender produces a symbol to represent 

the cell. This symbol is sent to the receiver. The receiver sees the target cell 
and a distractor cell and is asked to pick out the target based on the symbol 

sent by the sender. The entire sender and receiver architectures are trained 

in an end to end manner. 

 

Fig. 2 shows a toy example of how ESCELL works. It 

actually shows Experiment 2, where the sender only sees the 

target image and has no information of the distractor image. 

The goal of this example is for the receiver to correctly 

identify the target cell based on the symbol that the sender 

transmits to the receiver. The target cell representation is 

forwarded through a sender neural network architecture. The 

sender outputs a symbol using Gumbel softmax relaxation. 

This symbol is fed to the receiver. The receiver also consists 

of a neural network that takes as input the target image, the 

distractor image and the symbol. It combines these inputs 

using a receiver neural network architecture and guesses the 

target.  

We use negative log likelihood loss (similar to 

classification) to compute the loss of the receiver. This loss 

is backpropagated through the receiver and sender 

architectures to train the ESCELL framework. The next 
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section describes the experimental settings and results using 

this framework. 

 

5. EXPERIMENTS AND RESULTS 

 

The dataset used in the experiments is obtained from the 

data described in Section 2. We extract 28 features from the 

cells – 7 quantitative shape and intensity based statistics 

from each immune marker. There are a total of 4125 

samples (138 from CD3, 132 from CD20, 177 from CD68, 

391 from Claudin1 and 3287 from Negative). We divided 

the data into a training, validation and testing with stratified 

splits of 64%, 16% and 20% respectively. The Emergence 

of language in games (EGG) toolkit [7] was used and 

modified to implement the referential games in the 

following experiments: 

 

1. The traditional referential game described in the 

framework in Section 4. Here the sender and receiver 

both observe the K images sampled independently from 

each concept. The receiver observes a permutation of 

the sampled images shown to the sender and must guess 

which of the K images is the target ut. 

 

2. A modification of the sender receiver referential game 

inspired by [3], where the sender is only shown the 

target image ut, generates a symbol s from the 

vocabulary. Similar to the first experiment, the receiver 

must now choose the correct image from the samples 

using ut. 

 

The sender and receiver are encoded as feedforward neural 

networks in these experiments. The architecture embeds the 

input vector in a “game-specific” embedding space of size 

15, followed by 1-D convolutional layer with sigmoid non-

linearity. The resulting feature maps are sent through 

another non-linear filter to produce scores over a vocabulary 

of size 100. The activation of this layer is encapsulated by a 

Gumbel Softmax relaxation to produce a single symbol. The 

symbol is a one-hot vector over the vocabulary space.  

 

The receiver architecture takes the symbol, the target and 4 

distractor images sampled from different concepts in 

random order. The symbol and the images are embedded in 

a “game-specific” embedding space of size 15. A dot-

product is computed between the symbol embedding and the 

image embeddings. The dot products are then converted to 

log probabilities using a log softmax layer across the 5 

outputs of the cross product. This output points to the target 

cell image. The loss is computed as the negative log 

likelihood using this output and the target one-hot vector. 

Fig. 2 shows a visualization of the framework which is 

inspired from [2] and [3]. 

Table 1 shows the results of the two experiments in terms of 

their identification accuracy, fraction of symbols used in the 

language, and dominant symbols used for each of the 

markers with their corresponding percentage within the 

same marker. We observe that the accuracy is higher in the 

case of experiment 1 (5 sender images) than in experiment 2 

(1 sender image). This is intuitive because the sender has 

access to all distractor images and can adequately 

discriminate between them. In addition, we see that 

experiment 1 uses approximately 33% of the symbols 

compared to experiment 2 and is far more efficient. This can 

be attributed to the same reason.  
Table 1: Results of signaling game on the two experiments. In Experiment 

1, both the sender and receiver observe 5 input cells, whereas in 

Experiment 2, the sender observes only the target cell and the receiver 
observes the 5 input cells from which to pick the target. 

 
 Experiment 1 Experiment 2 

Identification accuracy (%) 93.18 78.78 

Fraction of symbols used (%) 5 15 

CD3 majority symbol (% fraction) 62 (96.43) 32 (100) 

CD20 majority symbol (% fraction) 50 (85.18) 76 (96.29) 

CD68 majority symbol (% fraction) 55 (94.44) 81 (86.11) 

Claudin1 majority symbol (% fraction) 84 (82.50) 89 (33.75) 

Negative majority symbol (% fraction) 97 (61.67) 32 (43.64) 

 

We also note that both the experiments associate different 

symbols with each of the protein markers, and the 

corresponding percentages of majority symbols are quite 

high with the exception of Claudin1 and Negative (denoted 

as None in the experiments) in experiment 2. We also 

observe that symbol 32 appears as majority for both CD3 

and Negative because few cells have weak CD3 staining. 

Fig. 3 shows a distribution of symbols with respect to each 

of the protein markers in the form of violin plots.  
 

 

 
 

 

 

 

 
    

 

 

 

 
                    (a) Experiment 1                                   (b) Experiment 2 
 

Fig. 3: Violin plots of the distributions of symbols from 1-100 with respect 

to the protein markers in (a) Experiment 1 and (b) Experiment 2 

 

As we can see from the plots, each protein marker seems to 

be associated with a distinct symbol. The symbols at which 

we see the violin plots concentrate correspond to the 

majority symbols observed in Table 1.  

The results of Experiment 1 are better than Experiment 2 

which is reflected by the identification accuracies in Table 1 

and the clustering of the symbols in Fig. 3. This is expected 

because in Experiment 1, the sender has access to the 

distractor cells and can adequately differentiate between the 

target and distractors. In Experiment 2, the sender only sees 

the target cell and this setting is therefore much harder. We 
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also observe that the symbols for Negative (represented as 

None in the plots) are more distributed than the other protein 

markers. This could be due to the fact that the cells that 

don’t stain positive for any of the markers in this work, 

could be positive for other markers. This could also be due 

to non-specific staining in the Negative class. It would be 

interesting to see if the symbols generated in the Negative 

class could correspond to any new phenotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 4: Color composite image: CD20 (B-Cell), CD3 (T-Cell), CD68 

(Macrophage), Claudin1 and DAPI (Cell Nuclei), in Red, Green, Blue, 

Cyan and Gray respectively. The segmented stroma nuclei is overlaid with 

the symbol identifier for each cell. We observe that the different cell 
phenotype markers are associated with distinct symbols, but are same for 

the cells with the same marker. The symbols generated correspond to 

Experiment 1 in Table 1 and Fig. 3(a). 

 

Fig. 4 shows a visualization of a color composite image with 

the markers along with the nuclei. The markers are 

represented as different colors – CD20 (Red), CD3 (Green), 

CD68 (Blue) and Claudin1 (Cyan). The cell nuclei (DAPI) 

is represented as gray. We observe that ESCELL is able to 

successfully associate symbols with different immune cells 

with a high degree of accuracy. The overlaid symbols are 

generated using the model in Experiment 1 where the sender 

architecture observes all the distractor images. Even though 

the cells within the same marker have different shape and 

intensity characteristics, the ESCELL framework is able to 

develop a coherent symbolic language to communicate the 

cell phenotypes adequately.  

The dominant markers in Table 1 show up consistently in a 

section of the tissue sample in Fig. 4. The results in Table 1, 

Fig. 3 and Fig. 4 show that ESCELL can be used a symbolic 

language framework for cell biology. 

 

6. CONCLUSION 

 

We introduce an emergent symbolic cellular language 

framework known as ESCELL. It is formulated as a 2-agent 

game in which agents communicate with each other using 

the language of symbols. The framework is based on a 

referential signaling game where the task is to identify the 

target cell among distractor cells. The framework consists of 

a sender and receiver. Both are formulated as end to end 

deep neural networks. We show that the symbols generated 

by the sender are distinct for each cell phenotype. This is 

one step towards making deep learning methods more 

interpretable by introducing symbols as a form of 

communication language between artificial agents reasoning 

about the biology of cells, in particular the expressed 

phenotypical characteristics. 

 

There is scope for a lot of potential work going forward. 

Convolutional neural networks maybe trained to generate 

symbols in an end to end manner to generate symbols 

instead of using feature extraction methods. One very 

important step towards true interpretability would be to 

ground the symbols with natural human language. In 

addition, the game could be extended to include other 

learning settings such as supervised (eg. classification) and 

unsupervised learning (e.g. segmentation).  
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