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ABSTRACT

Accurate analysis of vesicle trafficking in live cells is chal-
lenging for a number of reasons: varying appearance, com-
plex protein movement patterns, and imaging conditions. To
allow fast image acquisition, we study how employing an
astigmatism can be utilized for obtaining additional informa-
tion that could make tracking more robust. We present two ap-
proaches for measuring the z position of individual vesicles.
Firstly, Gaussian curve fitting with CNN-based denoising is
applied to infer the absolute depth around the focal plane of
each localized protein. We demonstrate that adding denoising
yields more accurate estimation of depth while preserving the
overall structure of the localized proteins. Secondly, we in-
vestigate if we can predict using a custom CNN architecture
the axial trajectory trend. We demonstrate that this method
performs well on calibration beads data without the need for
denoising. By incorporating the obtained depth information
into a trajectory analysis, we demonstrate the potential of im-
proving vesicle tracking.

Index Terms— tracking, biomedical imaging, gaussian
fitting, denoising, convolutional neural networks, confocal
microscopy

1. INTRODUCTION

The quantitative analysis of the vesicle movement is impor-
tant for biological studies in cells and movement along z-axis
can be essential for understanding biological processes. Sev-
eral different approaches to achieve three-dimensional (3D)
localization had been proposed in recent years [1, 2]. These
techniques mainly involve changing the shape of the point
spread function (PSF) used in the imaging setup. Such tech-
niques include astigmatism, double helix, and biplane [3].
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Through PSF shape modification, the localization of single
fluorescent molecules can be achieved not only in the lateral
plane but also axially. Astigmatic localization microscopy is
a popular single-molecule localization method, with several
software variations and heavy usage in 3D localization com-
petitions. The defining characteristic in images with astig-
matism is the elongation of spots in one of the lateral axes
as you move from the focal plane towards the objective, and
elongation in the other lateral axis as a particle moves away
from the focal plane and the objective. The usual way to ex-
tract depth with this kind of data is to fit an elliptical Gaussian
curve to the localized spots [3]. This Gaussian fitting process
is favored because of its simplicity and the speed by which it
can be computed. However, due to non-ideal imaging optics
and background noise, Gaussian fitting may sometimes fail to
obtain good depth estimates.

Localization and tracking algorithms were demonstrated
to work really well in several settings. However, these often
require the data to be collected over a long period of time to
produce images that have high signal-to-noise ratio (SNR).
In the case of live imaging and capturing the movement of
molecules like proteins, we would often trade off SNR with
increased temporal resolution. In such cases, the noise in the
collected data poses a challenge in processing and analysis.

In this paper, we utilize two approaches for astigmatic lo-
calization: standard Gaussian curve fitting and a CNN-based
model to classify the axial trajectory trend of the vesicles. The
first approach provides quantitative results in z-localization.
It uses the standard Gaussian fitting method. We improve on
this by applying a denoising step to get good depth estimates
even on noisy images. We also present a second approach
that doesn’t require denoising and is based on the temporal
changes in the vesicle appearance. We modelled and tested
these approaches using astigmatic spinning disk confocal mi-
croscopy images of calibration beads. The contributions of
the paper are the application of a CNN-based self-supervised
denoising step to address the low SNR in confocal imaging
to achieve better depth estimations through Gaussian fitting
and the development of a lightweight CNN-based approach



to classify the axial trajectory trend. Lastly, we demonstrate
how the depth information extracted from the two approaches
can be used to improve the association of localized molecules
for protein tracking on images of living epithelial cells of
Drosophila egg chamber as described in [4].

2. METHODOLOGY

2.1. Asymmetric Gaussian fitting

The estimation of the point spread function using Gaussian
fitting on astigmatic conditions is powerful enough to esti-
mate depth with 50 nm precision [1, 5]. In general, the stan-
dard deviations of a Gaussian curve along the two lateral axes
are modelled with the following equation:
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where A is the intensity or photon count of the Gaussian peak,
x0 and y0 are the spatial coordinates of the peak, �x and �y

are the standard deviations along the x and y axes, and B is an
offset term for the background fluorescence.

In our experiments, we imaged living epithelial cells of
Drosophila egg chambers using a spinning disk confocal mi-
croscope with 0.97 radians peak-to-peak of astigmatism. We
adapted the Gaussian fitting method to use the x-y localization
obtained from the approach described in [4]. For each x-y lo-
calization, we extracted a 16⇥16 region of interest, with the
localized spot in the center, and individually fitted Gaussian
curves to obtain the values for �x and �y .

Next, using the calibration beads data and through nonlin-
ear least square optimization using the Levenberg-Marquardt
algorithm as provided in scipy [6] optimization library, we
model a defocus curve described in [5] as follows:
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where d is the depth of focus, cx and cy are the lateral offsets,
and Ax, Ay , Bx, By are coefficients of higher order terms to
correct for non-ideal optics.

One challenge in this approach, however, is the amount of
noise in regions of interest. Fitting a 2D Gaussian on these
noisy images yields inaccurate values of �x and �y and there-
fore produces poor estimates of the axial coordinates. To re-
solve this issue, we employed a deep learning algorithm to
denoise the noisy confocal images. Noise2self [7] is a self-
supervised CNN-based algorithm that has been demonstrated
to successfully denoise natural and microscopy images. In
the absence of ground truth reference data for the confocal
images, a self-supervised technique like Noise2self is a suit-
able method for denoising. This algorithm assumes the statis-
tical independence of the noise across pixels to calibrate the

Fig. 1: Using Noise2self. (a) Protein localized with the bright
spot at the center. (b) Noise2Self denoising result of the same
protein.

Fig. 2: Custom CNN architecture used for the classification
of axial trajectory trend

hyperparameters of a median filter or CNNs for denoising. A
model consisting of the original implementation of Noise2self
and a Densely Connected Convolutional Network (DCN) [8]
as backend was used to suppress noise from the confocal mi-
croscopy data prior to Gaussian fitting. This additional step
resulted in a more accurate localization of the spots and a bet-
ter estimation of the Gaussian curves. Figure 1 illustrates an
example of a localized protein before and after denoising.

2.2. Classifying protein axial movement trend using CNN

In contrast to the Gaussian fitting based approach where the
depth information is extracted from a single frame, this CNN-
based approach exploits temporal information to extract the
trend in the axial trajectory (upward, downward, constant).
This approach does not require any kind of denoising and
the trend information can be sufficient for some applications.
With this, we formulate the protein axial tracking as a three-
class classification problem. Using the x-y localization from
[4], we obtain 16⇥16 regions of interest, centered on the lo-
calized spots. For each localized protein, we stack the ROIs
from three successive frames to form a three-channel image
that serves as input to the CNN classifier trained for this task.

For the CNN classifier, we utilized a lightweight custom
architecture, shown in Figure 2. We trained this network im-
plemented in Keras using the following parameters: Adam
optimizer with learning rate (10e-5), batch size of 32, 1000
epochs, and categorical cross entropy as loss function.

The training data is obtained from calibration beads
videos acquired with the same spinning disk confocal mi-
croscope setup as the vesicle tracking movies. We simulated
the upward, downward, and constant movement trend by get-
ting sets of three frames, each from a different depth in the



z-stack, and stacked the frames to construct three-channel
input. Overall, we have constructed 64,092 three-channel
input data and used a 50-50 train-test split. To make the
model more robust, we performed data augmentation through
addition of Gaussian noise with µ of 5.0 and � of 10.0.

3. RESULTS AND DISCUSSION

In this section, we evaluated the performance of the two ap-
proaches. We used the original calibration beads data imaged
with a spinning disk confocal microscope with astigmatism.
Z-stacks of the calibration beads were taken with 31 steps and
50 nm step size. Two z-stacks were obtained, one imaged with
1/1000th exposure time relative to the other, yielding one with
low SNR and one with high SNR.

3.1. Asymmetric Gaussian fitting

To validate the results for the Gaussian fitting with denois-
ing approach and to ensure that no artifacts are introduced
in denoising and the measurements obtained are correct, we
tested the same denoising model on the low SNR z-scan of
calibration beads with known axial coordinates. The calibra-
tion beads were imaged with the same conditions as the pro-
tein data, with the same camera frame rate to obtain similar
level of noise. We observed that the denoising approach pre-
serves the overall structure of the spots. Figure 3 illustrates
the advantage of the denoising for the Gaussian fitting. De-
noising before Gaussian fitting yields better estimated ratio
of �x/�y when compared with noisy data. Without denois-
ing, the x-y standard deviation ratios we obtain from fitting
are almost constant, regardless of depth. In other cases, the
computed values are way off from the true values as shown
in Figure 4. This indicates that we cannot obtain useful depth
information as the noise obscures the fluorescent signal, but
with the denoising step, we can decrease the amount of noise
that will result to a better fit. Quantitatively, adding the de-
noising step translated to a ten-fold decrease (from 0.0110
to 0.0013) in the mean squared error (MSE) of the fit with
respect to the high SNR data. However, the problem still re-
mains towards the ends of the z range (±500 nm and further),
far away from the focal plane, where we observed an MSE of
0.1361, but this can be attributed to increased loss of signal in
depths very far from focus.

3.2. Classifying protein axial movement trend using CNN

Overall, the CNN-based approach to classify the axial trajec-
tory trend provides very encouraging results. With an early
stopping criterion set with minimum improvement delta of
10e-7, training converged early at epoch 40, with 0.0361 loss
and 98.91% accuracy. We evaluated the model with the re-
maining 50% of the data, and found the model performing
well at 98.64% test accuracy.

Fig. 3: Gaussian fitting on denoised low SNR data resulted in
better depth approximations.

Fig. 4: Test results on calibration beads fixed on x-y with the
sample stage moved in a sinusoid manner in z.

To further evaluate this approach, we captured additional
calibration beads data by moving the sample stage in a sinu-
soid manner in the z direction, simulating the up and down
motion of localized molecules. Both approaches were tested
on the data and Figure 4 illustrates the results, providing the
comparison of the proposed CNN-based approach and Gaus-
sian fitting with denoising to the actual depths.

3.3. Using extracted depth information in protein track-
ing

Lastly, we illustrate the advantage of the proposed depth es-
timators to improve tracking accuracy. Here, we utilize the
approach presented by Dmitrieva and collaborators [4] which
introduced a two-step linking process for data association.
Firstly, a set of short tracks (tracklets) are formed based on
the distance between the detections. Secondly, the tracklets
are linked to form final tracks. The linking is based on the
tracklets’ parameters and defined by the connectivity score.
The score represents a probability of the tracklet pair to be
connected and is computed by inference over a Bayesian net-



Fig. 5: Example of tracklets generated from [4]. Tracklets
85 and 88 are possible connections to track 77. With the
Bayesian Network in [4], tracklet 85 is more likely to be con-
nected.

TRACKLET 88 TRACKLET 85
w/o
depth

w/
depth

w/o
depth

w/
depth

TRACKLET 77 0.8536 0.8536 0.9325 0.9625

Table 1: Connectivity matrix for tracklet 77 with and without
depth depth estimation for tracklets 88 and 85.

work (BN).
We applied the tracking approach on the protein data with

astigmatism and compared the connectivity scores for track-
lets with and without the extracted depth information using
the two proposed approaches. Intuitively, we expect an in-
crease in the likelihood of connectivity for tracklets whose
ends are more or less at the same depth or following the same
trajectory trend. Figure 5 illustrates an example of the track-
linking task with three tracklets to be considered. Using the
originally proposed tracking solution without depth informa-
tion, tracklet 77 is linked with tracklet 85 (and not 88) with
score of 0.9325. Using the approaches presented in this paper,
we estimated tracklet 77 to be moving downwards (647 nm
depth) and connecting tracklet 85 continues this trend (679
nm depth) but not tracklet 88 (-274 nm depth). As presented
in Table 1, if we include this depth information and modify
the BN topology in [4] to incorporate extracted depth infor-
mation, we still see similar patterns in the connectivity ma-
trix for tracklet 77 but with an increase in the magnitude on
the tracklet to be connected. Adding depth information from
the proposed approaches strengthens this track linking pro-
cess by increasing the confidence in connectivity. For cases
with close connectivity scores, the depth information may be
crucial in correctly linking tracks.

4. CONCLUSION

Two approaches for extracting depth from confocal mi-
croscopy data with astigmatism are presented. The first
approach uses the standard and widely accepted Gaussian
fitting method. We added a denoising preprocessing step
and demonstrated that this additional step resulted in better

depth estimates. The CNN-based approach focuses on tem-
poral changes in the particle appearance and provides axial
trajectory trend. We have shown that even with a lightweight
architecture, this information can be obtained without the
need for denoising.

The CNN-based approach could be extended to finer-
grained classes. For example, quantitative evaluation of the
movement in z-axis, as an extension of the axial trajectory
trend. This would give insight on the speed by which the
molecules move in the z direction. For both approaches, their
integration with existing 2D localization and tracking algo-
rithms like in [4] and further validation tests may provide
better models to understand underlying subcellular mecha-
nisms.
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