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ABSTRACT
The diagnosis of the presence of metastatic lymph nodes
from abdominal computed tomography (CT) scans is an
essential task performed by radiologists to guide radiation
and chemotherapy treatment. State-of-the-art deep learning
classifiers trained for this task usually rely on a training
set containing CT volumes and their respective image-level
(i.e., global) annotation. However, the lack of annotations for
the localisation of the regions of interest (ROIs) containing
lymph nodes can limit classification accuracy due to the
small size of the relevant ROIs in this problem. The use
of lymph node ROIs together with global annotations in
a multi-task training process has the potential to improve
classification accuracy, but the high cost involved in ob-
taining the ROI annotation for the same samples that have
global annotations is a roadblock for this alternative. We
address this limitation by introducing a new training strategy
from two data sets: one containing the global annotations,
and another (publicly available) containing only the lymph
node ROI localisation. We term our new strategy semi-
supervised multi-domain multi-task training, where the goal
is to improve the diagnosis accuracy on the globally anno-
tated data set by incorporating the ROI annotations from a
different domain. Using a private data set containing global
annotations and a public data set containing lymph node ROI
localisation, we show that our proposed training mechanism
improves the area under the ROC curve for the classification
task compared to several training method baselines.

Index Terms— semi-supervised, multi-task, multiple do-
main, ROI annotations, weak annotations, colon cancer,
lymph node diagnosis, abdominal CT.

1. INTRODUCTION
Colon cancer is one of the most frequently diagnosed

cancers in the world, with nearly 1 million new cases and
551,269 deaths in 2018 [1]. Patients with cancer have a high
risk for nodal metastasis, therefore oncologically adequate
surgery consists of segmental colectomy with lymph node
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dissection followed by adjuvant treatment [2]. However
approximately 20% to 30% of patients develop another
cancer months later, thus alternative treatment strategies
including neoadjuvant therapy prior to surgery are currently
being investigated [3]. Under these circumstances, accurate
preoperative metastatic lymph node diagnosis is crucial in
determining the eligibility of neoadjuvant treatment and to
avoid the over treatment of patients. However, diagnosing
lymph nodes is a challenging task that is prone to inter-
observer variability [4]. As a result, computer-aided diag-
nosis systems are being designed to assist radiologists in
staging lymph node metastasis on cross-sectional imaging.

State-of-the-art deep learning classification models [5]
could in principle produce relatively accurate diagnosis of
metastatic lymph nodes. However, these models are trained
with weakly annotated data sets (i.e. image-level, or global,
labels), and fail to produce precise diagnosis in situations
where the regions of interest (ROIs) that explain such
diagnosis occupy a small portion of the input image, which is
the case for metastatic lymph node diagnosis from abdominal
CT scans. The classification accuracy of models which
perform diagnosis that depends on relatively small ROIs can
be improved by incorporating localization information to the
training process [6], [7], [8]. The main goal is that the model
learns to focus on the relevant ROIs to perform classification.
For these models, the training process becomes a multi-task
training, where the aims are to classify the entire image
and to localize the ROIs in image. However, such training
process is based on a strongly annotated training set that
contains local ROI and global diagnosis annotations, which
are costly and time consuming to obtain.

Aiming to reduce the burden of obtaining such ROI and
global annotations for the single-domain multi-task training
mentioned above, we hypothesize that global classification
accuracy can be improved if we use separate data sets (i.e.,
multi-domain), each one containing one particular type of
annotation (i.e., multi-task). This setup introduces the new
challenge of having a multi-domain multi-target training
mechanism, where each domain (i.e., data set) is annotated
for a different task – this motivates us to propose a new
semi-supervised learning approach that transfers the multi-
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task labels between multiple domains.
In this paper, we introduce a new semi-supervised train-

ing strategy to train multi-domain multi-task models where
different domains have different types of annotations. Our
strategy consists of jointly training a multi-task model with
semi-supervised learning on the unlabelled task of the other
domains. More precisely, we design a training strategy that
improves image classification in one domain by including a
ROI localization task from a different domain. We evaluate
our training method on the problem of metastatic colon
lymph node diagnosis from abdominal CT, using a private
data set that only contains global labels (RAH data set) and
a public data set that only has lymph node ROI annotations
(CI data set) [9]. Results on the RAH data set show that our
semi-supervised multi-domain multi-task training strategy
outperforms other training strategies such as semi-supervised
or multi-task learning without semi-supervision.

2. RELATED WORK

Diagnosing metastatic lymph nodes from abdominal CT
scans has traditionally been tackled with the design of
hand-crafted features [10]. The main disadvantage of these
methods lies in the sub-optimality of the features as there
is no guarantee that these features are optimal to perform
diagnosis, yielding relatively low accuracy scores. Feature
sub-optimality has been addressed by the computer vision
community by using deep learning classifiers that learn op-
timal features while being trained to perform diagnosis [5].
However, the performance of such classifiers decreases in
problems where the regions of interest in the image to be
classified are relatively small.

The medical image analysis community focused on in-
cluding the localization of regions of interest in the training
process [6], [7], [8] to increase classification performance, in
a single-domain multi-task approach. The training process in
such cases does not only optimise image classification, but
also ROI localisation. Although successful, this increase in
performance comes at the expense of strongly annotating
training sets with ROIs and classification labels, a costly
process for many medical image analysis problems.

Multi-task learning from multi-domain data [11] was
proposed to learn from data sets that have been labelled for
different but related tasks. The main aim is to improve the
performance during inference on each of the labelled tasks in
the data sets. However, these approaches require the multi-
task annotations in all data sets to generalize well in each
of the tasks across data sets, which is costly to be acquired.
Moreover, multi-domain multi-task methods do not use all
the information available in the data sets as they do not
exploit, during training, un-labelled data for a given task.

Semi-supervised learning has been proposed to incor-
porate un-annotated data for a given task into the learn-
ing process. Initially proposed for incorporating unlabelled
data from the same task and domain [12], [13], it has

recently been successfully explored in a multi-task set-
up [14], [15]. Contrary to previous semi-supervised multi-
task approaches [14], [15], we propose a training method that
not only deals with tasks that have been labelled in the same
domain, but also where each task is labelled in a different
domain.

3. METHODS

3.1. Data Sets

Let D(1) =
{(

v
(1)
i , y

(1)
i

)}
i∈{1,...,|D(1)|}

be a weakly annotated

data set, where v
(1)
i : Ω → R represents the abdominal CT

scan of the ith patient in the data set D(1) and Ω ∈ R3 is
the volume lattice, and y(1)i ∈ {0, 1} is the scan-level label
indicating the presence (y(1)i = 1) or absence (y(1)i = 0) of
any metastatic lymph node in the CT scan of patient i. Let
D(2) =

{(
v
(2)
j , s

(2)
j

)}
j∈{1,...,|D(2)|}

be a strongly annotated data

set where v
(2)
j : Ω → R represents the abdominal CT scan

of the jth patient in the data set D(2), and s
(2)
j : Ω→ {0, 1}

is the voxel-wise ROI annotation of the presence of a lymph
node in the CT scan of patient j. Assume that each data
set comes from a different domain, implying that the data
set distributions (v, y) ∼ P (1)(v, y) (for (v, y) ∈ D(1))
and (v, s) ∼ P (2)(v, s) (for (v, s) ∈ D(2)) are different.
Note that each data set is labelled for a different task:
D(1) for image classification and D(2) for lymph node ROI
detection. We split each data set into training, validation and
testing sets in a patient-wise manner, forming the sets T (1)

train,
T (2)
train,T (1)

val , T (2)
val , T (1)

test and T (2)
test for data sets D(1) and D(2).

3.2. Semi-supervised Multi-domain Multi-task training

Our model is composed of three modules: an encoder
fθe , a classification branch σθc and a detection branch gθd
with parameters θe, θc, θd respectively. The model receives
as input a CT scan v and forms a feature embedding
o = fθe(v) using the encoder. The embedding o is used
as input by the classification and detection branches. The
classification branch returns ỹ = σθc(o) representing the
binary classification of the input scan v. The detection
branch produces an ROI map s̃ = gθd(o) that estimates
the probability that each voxel represents a lymph node. A
binary ROI mask s̃ζ is generated by thresholding s̃(ω) > ζ,
for ω ∈ Ω. See Fig. 1 for a summary of the architecture of
our method.

The training consists of two alternating stages: 1) label
propagation between the two data sets sets [16], and 2) multi-
domain multi-task training using the real and propagated
labels. For label propagation between the two data sets [16],
we replace the original D(1) by D(1)

new = D(1)
⋃
D̃(1), with

D̃(1) = {(v, ỹ)|v ∈ D(2), ỹ = σθc(fθe(v))} and the original
D(2) by D(2)

new = D(2)
⋃
D̃(2), with D̃(2) = {(v, s̃)|v ∈

D(1), s̃ = gθd(fθe(v))}.



Fig. 1: Architecture of our method. The model receives a
scan v as input and the encoder builds its feature repre-
sentation o = fθe(v), which is used by the classification
branch σθc(o) and the ROI detection branch gθd(o). The
ROI binary map is obtained by thresholding the output from
the ROI detection branch.

For the multi-domain multi-task stage, we jointly min-
imise the classification loss with

θ∗c , θ
∗
e = arg max

θc,θe
EP (1)(v,y)[`C(σθc(fθe(v)), y)], (1)

where `C denotes the binary cross entropy loss, and the ROI
detection loss with

θ∗d, θ
∗
e = arg max

θd,θe
EP (2)(v,s)[`D(gθd(fθe(v)), s)}], (2)

where `D denotes a loss that sums the voxel-wise cross
entropy loss and the Dice loss [17]. We only use the subsets
T (1)
train, T (2)

train,T (1)
val , T (2)

val from D(1) and D(2) during the
training process.

The inference consists of feeding the model with an input
scan v that is encoded to obtain the feature embedding and
forwarded through the classification branch σθ∗c (fθ∗e (v)) to
yield the probability of metastatic lymph nodes.

4. EXPERIMENTS AND RESULTS

We assess our proposed method on the problem of
diagnosing the presence of metastatic lymph nodes from
abdominal CT scans. For the weakly labelled data set D(1)

we use a private data set from the Royal Adelaide Hospital
(RAH data set) that contains 123 scans from 123 patients.
Weak labels indicating the presence of any metastatic lymph
node are obtained from pathology reports and clinical notes.
There are 57 scans labelled with the presence of metastatic
lymph nodes and 66 scans labelled with the absence of

metastatic lymph nodes. Note that no lymph node local-
ization is provided in this data set. The data set D(2) that
provides lymph node localization information is publicly
available [9] (CI data set). There are 595 ROI localisation
annotations of lymph nodes from 85 scans of 85 patients.
Note that no scan-level label about metastatic lymph node is
provided with this data set. The RAH data set is randomly
divided into training (90 patients, 43 of them with metastatic
lymph nodes and 47 without), validation (10 patients, 4
with metastatic lymph nodes, 6 without), and testing (23
patients, 10 with metastatic lymph nodes, 13 without). The
CI data set is randomly divided into training (62 patients with
439 annotated lymph nodes), validation (7 patients with 54
annotated lymph nodes), and testing (16 patients with 102
lymph nodes). We train our method with the training set from
RAH and the entire CI data set. We utilize the validation set
of the RAH data set to perform model selection and we
report classification results on the testing set of the RAH
data set. We pre-process each image in both data sets by
subtracting the mean and dividing by the standard deviation
of the training set of the corresponding data set.

The encoder fθe(.) is represented by a 3-D Densenet [5]
consisting of 5 dense blocks. The input volume v size is
512×512×256 and the feature vector embedding o = fθe(v)
is of size 16 × 16 × 8. The classifier σθc(.) is composed
of two fully connected layers and outputs the probability of
presence of metastatic lymph nodes in v. The decoder gθd(.)
is also composed of 5 dense blocks, and outputs an ROI map
s̃ of the same size as the input scan and is thresholded at
ζ = 0.8 to obtain s̃ζ . The training process runs for 500
epochs and optimizes the parameters θe, θc, θd with Adam
optimizer (learning rate of 0.05).

We evaluate our proposed semi-supervised multi-domain
multi-task training method with the metastic lymph node
classification performance, measured with the area under
the ROC curve (AUC). We compare our proposed training
strategy against other training procedures: 1) supervised
baseline: a DenseNet [5] classifier trained on the RAH
data set and composed of the encoder and classification
branch; 2) semi-supervised: the same DenseNet classifier
from (1), trained with the RAH training set and including
the CI data set trained with propagated classification labels;
and 3) supervised multi-domain multi-task: the proposed
architecture trained with the RAH and CI data sets, where
the encoder and classifier are trained with the RAH data
set and the encoder and detector branches are trained with
CI data set. We present quantitative classification results in
terms of AUC on Table I.

5. DISCUSSION AND CONCLUSION

The experimental results presented in Table I show that
our proposed training method outperforms several baseline
training strategies for metastatic lymph node diagnosis from
abdominal CT scans. As explained in Sec. 1, the baseline



Training Method for the classifier Data Sets AUC
Supervised Baseline RAH 0.81
Semi-Supervised RAH + CI 0.84
Supervised Multi-domain Multi-Task RAH + CI 0.82
Semi-Supervised Multi-domain Multi-Task RAH + CI 0.86

Table I: Classification AUC on the RAH Test Set obtained
by the classifier trained with our proposed training strategy
and baseline methods.

(a) (b)

Fig. 2: Visual results produced by our proposed method on
the RAH data set. Image 2a shows the positive classification
of an scan containing a metastatic lymph node (marked in
red). Image 2b contains the negative classification of an
image with non-metastatic lymph nodes.

classifier achieves the lowest AUC score, which can be in
part due to the lack of lymph node localization. Interestingly,
propagating the classification labels from RAH to CI data set
(without including any localization in the training process)
yielded better results for classification than the supervised
multi-domain multi-task baseline. We believe this is due to
difficulty of integrating multiple tasks from different do-
mains into the training process without any semi-supervision.
Finally, our proposed semi-supervised multi-domain multi-
task training outperformed all baseline methods. As we
hypothesized in Sec. 1, jointly semi-supervising each of the
labelled tasks from a different domain results in a more
accurate model, probably due to the extra-supervision that
can facilitate the addition of data from a different domain.

In conclusion, we proposed a new semi-supervised multi-
domain multi-task training, where we semi-supervised the
detection task of the data set containing global annotations
and the classification task on the data set containing ROI
annotations. Results on diagnosing the presence of metastatic
lymph nodes from CT scans showed that our method suc-
cessfully incorporates lymph node localization information
from a different domain to improve classification results in
the original domain. We leave for future work the evaluation
of the lymph node ROI localization task in each data set.
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