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ABSTRACT
Learning-based approaches, especially those based on deep
networks, have enabled high-quality estimation of tissue mi-
crostructure from low-quality diffusion magnetic resonance
imaging (dMRI) scans, which are acquired with a limited
number of diffusion gradients and a relatively poor spatial
resolution. These learning-based approaches to tissue mi-
crostructure estimation require acquisitions of training dMRI
scans with high-quality diffusion signals, which are densely
sampled in the q-space and have a high spatial resolution.
However, the acquisition of training scans may not be avail-
able for all datasets. Therefore, we explore knowledge trans-
fer between different dMRI datasets so that learning-based
tissue microstructure estimation can be applied for datasets
where training scans are not acquired. Specifically, for a
target dataset of interest, where only low-quality diffusion
signals are acquired without training scans, we exploit the
information in a source dMRI dataset acquired with high-
quality diffusion signals. We interpolate the diffusion signals
in the source dataset in the q-space using a dictionary-based
signal representation, so that the interpolated signals match
the acquisition scheme of the target dataset. Then, the inter-
polated signals are used together with the high-quality tissue
microstructure computed from the source dataset to train deep
networks that perform tissue microstructure estimation for the
target dataset. Experiments were performed on brain dMRI
scans with low-quality diffusion signals, where the benefit of
the proposed strategy is demonstrated.

Index Terms— tissue microstructure, deep network,
knowledge transfer

1. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) noninva-
sively probes tissue microstructure, which provides valuable
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biomarkers for brain studies [1]. However, typical dMRI
scans are usually acquired with a limited number of diffusion
gradients and a relatively poor spatial resolution. These low-
quality diffusion signals could adversely affect the quality
of tissue microstructure estimation for complex biophysical
models using conventional model-based approaches [2, 3].

To improve tissue microstructure estimation, learning-
based approaches have been developed to map low-quality
diffusion signals to high-quality tissue microstructure [4–7].
For example, in [4] a multiple layer perceptron (MLP) is
used to learn the mapping from diffusion signals acquired
with a limited number of diffusion gradients to high-quality
tissue microstructure. Since the diffusion signal associated
with each diffusion gradient can be interpreted as a measure-
ment in the q-space, this strategy is also termed as q-space
deep learning (q-DL). q-DL is then improved by [5], where
a network is developed by exploiting the sparsity of diffu-
sion signals in the q-space and it achieves improved results
of tissue microstructure estimation. Spatial information can
also be incorporated into the network design [5, 6], where the
estimation quality is further improved. These q-DL meth-
ods focus on the estimation of tissue microstructure with
diffusion signals undersampled in the q-space. q-DL is then
extended to super-resolved q-DL (SR-q-DL) in [7], where the
spatial resolution of tissue microstructure estimation results
is improved as well. Specifically, the network design in [7]
integrates the sparsity of diffusion signals in the q-space with
super-resolution techniques, so that high-resolution tissue
microstructure can be estimated from low-resolution dMRI
scans acquired with a limited number of diffusion gradients.

In the learning-based approaches, the networks are trained
by high-quality dMRI scans acquired with a large number of
diffusion gradients (and a high spatial resolution for SR-q-
DL), where high-quality training tissue microstructure can
be computed with conventional model-based approaches.
However, in many situations, the datasets of interest may not
contain high-quality training dMRI scans, and how to per-
form learning-based tissue microstructure estimation for such
datasets is an open problem.

In this work, we explore knowledge transfer between
datasets to allow learning-based tissue microstructure estima-
tion for datasets where training scans are not acquired. We
exploit datasets where high-quality dMRI scans are available.
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For convenience, such a dataset is referred to as the source
dataset. Then, we use the information in the source dataset
to train a deep network that performs tissue microstructure
estimation for the dataset of interest, which is referred to as
the target dataset. However, in general the set of diffusion
gradients of the target dataset is not a subset of that of the
source dataset, and the diffusion signals in the source dataset
cannot be directly used for network training. Thus, to al-
low knowledge transfer from the source dataset to the target
dataset, the diffusion signals of the source dataset are inter-
polated in the q-space so that the interpolated signals match
the acquisition scheme of the target dataset and represent
diffusion signals undersampled in the q-space in the target
dataset. The interpolation is performed with a dictionary-
based representation of diffusion signals using the SHORE
basis [8]. The interpolated diffusion signals are used together
with the high-quality training tissue microstructure computed
from the original high-quality diffusion signals in the source
dataset to train the estimation deep network for the target
dataset. The proposed strategy was evaluated on brain dMRI
scans for both q-DL and SR-q-DL, where its benefit is shown.

2. METHODS

Suppose we have a target dMRI dataset Dt, where the diffu-
sion signals are acquired with a set Gt of diffusion gradients
that undersample the q-space and possibly a relatively low
spatial resolution. We explore how to perform learning-based
tissue microstructure for Dt when training scans are not ac-
quired for Dt. We propose to address this issue by transfer-
ring knowledge from a source dataset Ds, where high-quality
diffusion signals have been acquired, to the target dataset Dt.
Specifically, in Ds, diffusion signals are acquired with a set
G̃s of diffusion gradients densely sampling the q-space (and
a high spatial resolution if high-resolution tissue microstruc-
ture estimation is desired). UsingDs, we train a deep network
that matches the q-space sampling scheme of Dt, and tissue
microstructure estimation can then be applied forDt with this
deep network. The details of our strategy are described below.

2.1. Signal interpolation in the q-space

Since Gt is generally not a subset of G̃s, the diffusion sig-
nals in Ds cannot be directly used to train the estimation net-
work for Dt. Thus, we first interpolate the diffusion sig-
nals in Ds in the q-space to generate undersampled diffusion
signals that correspond to Dt. Note that for SR-q-DL, be-
fore the interpolation in the q-space, an additional step of
creating low-resolution diffusion signals is required, so that
the deep network can take low-resolution diffusion signals as
input and output high-resolution tissue microstructure. The
low-resolution diffusion signals are computed by taking the
block-wise mean [9] in the scans in Ds. Specifically, if the
upsampling rate in SR-q-DL is γ (an integer), the size of the

block for computing the low-resolution signals is γ.
We perform the signal interpolation in the q-space based

on the fact that diffusion signals can be represented by a set of
suitable basis functions [8]. We select the SHORE basis [8],
which has been widely applied in the reconstruction of dif-
fusion signals. Specifically, suppose at a voxel the diffusion
signal at the coordinate q in the q-space—i.e., associated with
the diffusion gradient q—is y(q); then we have [8]

y(q) =

N∑
n=0

L∑
l=0

l∑
m=−l

cnlmΦnlm(q), (1)

where Φnlm(q) is the value of the SHORE basis function with
a radial order n, angular order l, and angular degree m for the
diffusion gradient q, cnlm is the corresponding coefficient,
and N and L represent the maximal radial order and angular
order, respectively. We can concatenate the diffusion signals
in the q-space and rewrite Eq. (1) in a matrix form for Ds and
Dt, which leads to the dictionary-based representation

ys = Φscs,yt = Φtct. (2)

Here, ys and yt represent the diffusion signal vector at a voxel
in Ds and Dt, respectively, Φs and Φt are the dictionaries
computed from the SHORE basis functions corresponding to
G̃s and Gt, respectively, and cs and ct are the corresponding
vectors of coefficients.

Using Eq. (2), we can interpolate the signals in the q-space
for Ds, so that the interpolated signals correspond to the q-
space sampling scheme in Dt. To achieve that, we first esti-
mate cs by solving the following minimization problem [8]

arg min
cs

||ys −Φscs||`2 + λl||Lcs||`2 + λn||Ncs||`2 , (3)

where λl and λn are weighting constants, and N and L are
two diagonal matrices such that diag(N) = n(n + 1) and
diag(L) = l(l+ 1) [8]. Eq. (3) has a closed form solution [8]

ĉs = (ΦT
s Φs + λlL

TL + λnNTN)−1ΦT
s ys. (4)

The default parameters given by Dipy [10] are used for the
SHORE representation and solving Eq. (3). Then, with the
estimated coefficients ĉs, we compute the interpolated diffu-
sion signals corresponding to Gt by ŷs = Φtĉs.

2.2. Network training and evaluation

Using the interpolated signals and high-quality tissue mi-
crostructure computed from the original high-quality diffu-
sion signals in Ds, we can train a deep network for tissue
microstructure estimation for Dt. We consider patch-based
deep networks for tissue microstructure estimation, which
have achieved state-of-the-art performance. In particular, we
select the networks in [5] and [7] for q-DL and SR-q-DL, re-
spectively. These deep networks take patches of low-quality



diffusion signals as input and output high-quality tissue mi-
crostructure at the center voxel(s) of the input patch. The
outputs are concatenated to obtain the final tissue microstruc-
ture map. We train the deep networks according to their
proposed strategies as described below.

FromDs we can extract training samples by using patches
of which the centers are inside the brain. For convenience,
we denote the set of training samples by S= {ŷ(i)

s ,m
(i)
s }Mi=1,

whereM is the total number of training samples, and ŷ
(i)
s and

m
(i)
s are the interpolated signals in the input patch and high-

quality tissue microstructure of the output patch for the i-th
training sample, respectively. For q-DL, we follow [5] and
set the patch sizes of ŷ(i)

s and m
(i)
s to 33 and 13, respectively;

for SR-q-DL, we follow [7] and set the patch sizes of ŷ(i)
s and

m
(i)
s to 53 and 23, respectively. Note that in SR-q-DL, the

diffusion signals are downsampled in the spatial domain as
describe in Sect. 2.1 before q-space interpolation, and training
tissue microstructure is computed at its original resolution.
We follow the settings of training in [5] and [7] for q-DL and
SR-q-DL, respectively, and the deep networks trained by S
can then be used to estimate tissue microstructure for Dt.

For evaluation, like in [5] and [7], we considered the tissue
microstructure measures described by the NODDI model [2],
which has been widely used in neuroscientific studies. These
measures include the intra-cellular volume fraction vic, cere-
brospinal fluid (CSF) volume fraction viso, and orientation
dispersion (OD). The AMICO algorithm [3] was used to
efficiently compute the training NODDI tissue microstruc-
ture using the original high-quality diffusion signals in Ds.
For quantitative evaluation, high-resolution diffusion signals
densely sampling the q-space were acquired for Dt, and from
these signals gold standard tissue microstructure (used for
evaluation only) was computed using AMICO [3]. The ab-
solute difference between the estimation result and the gold
standard was computed to measure the estimation error.

3. RESULTS

We selected the HCP-MGH dataset [11] as the target dataset,
where dMRI scans of 32 subjects were used for evalua-
tion. The dMRI scans were acquired with an isotropic
spatial resolution of 1.5 mm and 512 diffusion gradients
(b = 1000, 3000, 5000, 10000 s/mm2). To generate low-
quality dMRI scans with diffusion signals undersampled in
the q-space, 36 diffusion gradients (18 on each of the shells
b = 1000, 3000 s/mm2) were selected as the diffusion gra-
dients Gt that undersample the q-space. For q-DL, we sought
to perform high-quality tissue microstructure estimation us-
ing these undersampled signals corresponding to Gt. For
SR-q-DL, these undersampled diffusion signals were then
subsampled in the spatial domain by a factor γ = 2 using the
block-wise mean [9], so that low-resolution dMRI scans with
a limited number of diffusion gradients were generated; and

Fig. 1. A representative axial view of the tissue microstruc-
ture maps estimated by the proposed method. The gold stan-
dard and the AMICO results are also shown for reference.

we sought to estimate high-resolution (an upsampling rate γ
= 2) tissue microstructure from these low-resolution scans.
For both q-DL and SR-q-DL, the original high-resolution
diffusion signals densely sampled in the q-space were only
used to compute the gold standard tissue microstructure for
evaluation and not used in network training.

We selected the HCP-Minn dataset [12] as the source
dataset, where dMRI scans of five subjects were used for
network training. The dMRI scans were acquired with an
isotropic spatial resolution of 1.25 mm and 270 diffusion
gradients (b = 1000, 2000, 3000 s/mm2). Using these scans,
we computed high-quality tissue microstructure maps for
training. Then, we generated low-quality input diffusion sig-
nals for network training. For SR-q-DL, the dMRI scans
were subsampled in the spatial domain by a factor γ = 2
using the block-wise mean [9]. Then, q-space interpolation
was performed for the dMRI scans with or without spatial
subsampling for SR-q-DL or q-DL, respectively. Finally,
deep networks were trained for the target dataset using train-
ing samples extracted from the source dataset. Note that to
make the gold standard of the target dataset comparable with
the training tissue microstructure in terms of the number of
diffusion gradients and b-value range, the diffusion signals
associated with b = 10000 s/mm2 in the target dataset were
not used for the computation of gold standard for evaluation.

We first qualitatively show that the proposed strategy
produces sensible high-quality tissue microstructure maps.
The estimation results of q-DL and SR-q-DL on a represen-
tative test subject are shown in Fig. 1 together with the gold
standard. The estimation results are also compared with the
conventional method which does not require acquisitions of
training data for the target dataset. Specifically, for q-DL
we consider the AMICO results computed from the diffu-
sion signals undersampled in the q-space, and for SR-q-DL
we consider the AMICO results estimated by upsampling



Fig. 2. Means and standard deviations of the average esti-
mation errors in the brains of test subjects for q-DL and SR-
q-DL. Asterisks indicate that the difference between the pro-
posed method and the competing method is significant using
a paired Student’s t-test. (∗∗∗p < 0.001, ∗p < 0.05)

the low-quality dMRI scans by a factor of two using 3rd-
order bsplines. Our method produced high-quality tissue
microstructure maps that restored more anatomical details
than the conventional approach. Next, the estimation results
were evaluated quantitatively. The average estimation errors
in the brain (excluding CSF [5]) of each test subject were
computed, and the means and standard deviations of the av-
erage errors are summarized in Fig. 2. The proposed method
was also compared with AMICO using paired Students t-
tests, and the errors of our method are significantly smaller
than those of AMICO, as indicated by the asterisks in Fig. 2.

4. CONCLUSION

We have explored knowledge transfer between datasets for
performing learning-based tissue microstructure estimation
for datasets where training scans are not acquired. Using
a dictionary-based signal representation, we interpolate the
high-quality diffusion signals in the q-space for the source
dataset to match the acquisition scheme of the target dataset.
The interpolated signals allow the training of deep networks
that estimate high-quality tissue microstructure for the tar-
get dataset. The proposed method was applied to q-DL and
SR-q-DL, and it was compared with conventional model-
based estimation approaches. Results on brain dMRI scans
demonstrate the benefit of the proposed strategy.
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