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ABSTRACT

Automatic melanoma segmentation in dermoscopic images is
essential in computer-aided diagnosis of skin cancer. Existing
methods may suffer from the hole and shrink problems with
limited segmentation performance. To tackle these issues,
we propose a novel complementary network with adaptive
receptive filed learning. Instead of regarding the segmenta-
tion task independently, we introduce a foreground network
to detect melanoma lesions and a background network to
mask non-melanoma regions. Moreover, we propose adap-
tive atrous convolution (AAC) and knowledge aggregation
module (KAM) to fill holes and alleviate the shrink prob-
lems. AAC explicitly controls the receptive field at multiple
scales and KAM convolves shallow feature maps by dilated
convolutions with adaptive receptive fields, which are ad-
justed according to deep feature maps. In addition, a novel
mutual loss is proposed to utilize the dependency between
the foreground and background networks, thereby enabling
the reciprocally influence within these two networks. Con-
sequently, this mutual training strategy enables the semi-
supervised learning and improve the boundary-sensitivity.
Training with Skin Imaging Collaboration (ISIC) 2018 skin
lesion segmentation dataset, our method achieves a dice co-
efficient of 86.4% and shows better performance compared
with state-of-the-art melanoma segmentation methods1.

Index Terms— Melanoma segmentation, adaptive recep-
tive fields, semi-supervised learning

1. INTRODUCTION

Melanoma is the most dangerous form of skin cancer, ac-
counting for a large percentage of skin cancer deaths [7]. For-
tunately, if detected early, melanoma survival rate exceeds
95% [7]. Dermoscopy is an imaging technique to visualize
deep levels of the skin and it is widely applied to diagnose
melanoma. However, manually reviewing dermoscopy im-
ages is an error-prone and time-consuming work even for pro-
fessional dermatologists. In this regard, the development of
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Fig. 1. Illustrations of (a) hole problem, (b) shrink problem.
Each group includes the original image, ground truth and pre-
diction of U-Net [5] from left to right.

computational support systems for automated segmentation
and analysis of dermoscopy images is highly desirable.

Automated melanoma segmentation remains to be chal-
lenging due to the huge variations of melanomas in terms
of shape, color and texture. Moreover, some samples may
contain artifacts, such as hairs, ruler marks and color cali-
brations, blurring melanoma lesions. Many algorithms have
been proposed to tackle these challenges [3, 6, 8]. Yuan et al.
[8] incorporated Lightness channel from CIELAB color space
and three channels of HSV space together for the melanoma
segmentation. Sarker et al. [6] presented a melanoma seg-
mentation model with negative log likelihood and end point
error loss functions to preserve sharp boundaries. Li et al. [3]
proposed a dense deconvolutional network with hierarchical
supervision to capture local and global contextual informa-
tion for melanoma segmentation. Although existing methods
have achieved significant success, they still suffer from the
hole (Fig.1 (a)) and shrink (Fig.1 (b)) in predictions. The rel-
atively low contrast between melanoma and non-melanoma
regions confuses the network and causes the appearance of
holes. The fuzzy boundaries lead to the shrinking prediction
and further decrease the sensitivity of prediction.

To address the hole and shrink problems mentioned be-
fore, we propose a complementary network consisting of a
foreground segmentation network and a background segmen-
tation network. With the fact that the dependency of two net-
works is crucial, we propose a mutual loss to optimize the
complementary network collaboratively. In this way, our net-
work is sensitive to boundary and can effectively deal with
shrink problem. Additionally, we propose AAC to explicitly
control the receptive field for incorporating local and context
information, and KAM to convolve shallow features by adap-
tive receptive field kernels learned from deep features. With
AAC and KAM, our model can expand the segmented region
to fit the ground truth lesion and fill holes.
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Fig. 2. Illustration of the proposed complementary segmentation network, including foreground and background networks.

2. METHOD

In this paper, we propose a complementary network for
melanoma segmentation in Fig.2. Our model is composed
of two networks, foreground and background segmentation
networks. For each segmentation network, the input im-
age is firstly passed through the contracting path with four
downsampling AACs. The sequences of AACs extract multi-
scale features from low-level contexture details to high-level
semantic structures. Then, extracted features from differ-
ent stages are incorporated by KAMs, which can aggregate
informative features and suppress noises. After that, an up-
sampling AAC is introduced to further extend the size of
feature maps. Finally, an upsampling layer and a fully con-
nected layer are used to predict the class result per pixel. The
foreground segmentation network and background network
are trained collaboratively and jointly by minimizing the pro-
posed mutual loss together with their individual foreground
and background loss.

2.1. Adaptive Atrous Convolution

Atrous convolution [3, 6] allows us to explicitly enlarge the
receptive field of filters. However, it is tricky to manually
choose the dilated rate, and the fixed-size receptive field is
the main limitation of atrous convolution. We propose the
AAC module to alleviate information loss caused by sparse
kernels and adaptively enlarge the receptive field as in Fig.2
(a). We first utilize various dilated rates to enlarge the recep-
tive field of kernels. Considering different sizes and shapes of
objects in images, the importance of feature maps with differ-
ent receptive fields may not be equal. Therefore, we assign an
importance score for each output of dilated convolution, and
AAC can be formulated as:

g[i, j] =
K∑

k=1

M∑
m=1

N∑
n=1

γk · f [i+ rk ·m, j + rk · n] · h[m,n], (1)

where f [i, j] and g[i, j] are input and output feature maps of
AAC. h[m,n] denotes the convolution kernel with M × N
size. rk is dilated rate that equals to k, and K is set as 3. γk
denotes the important score for dilated convolution with rate
rk. All γ values are initialized as 1

3 and updated every itera-
tion during training phases. Thus, each layer can adjust to its
appropriate receptive fields gradually. Finally, the weighted
output feature maps are added together for further process-
ing. With receptive fields being adaptively enlarged, the con-
text information can be incorporated into local information,
and the problem of holes and shrinks can be relieved.

2.2. Knowledge Aggregation Module

Previous methods usually use the “skip-connection” to con-
catenate multi-level features directly for accurate segmen-
tation [3, 5, 6]. However, the equal weights for different
channels of concatenated features are deficient due to the
redundant information. Moreover, it is necessary to incor-
porate context with local information to fill holes since the
context information may provide rich clues for local pre-
diction. Therefore, we propose KAM to amalgamate and
distill multi-level features as in Fig.2 (b). Assume feature
maps from last layer are x1 ∈ Rh×w×c and features from
the contracting path are x0 ∈ R2h×2w× c

2 , x1 is first convo-
luted to o1 ∈ R2h×2w× c

2 . Then, a 3 × 3 convolution layer,
rate learning layer, is applied to o1 to learn dilated rate map
r ∈ R2h×2w×1. Each pixel in r indicates the dilated rate
of convolution kernel at the corresponding position, and the
dilated rate map controls the scaling of receptive fields for
each position individually. The weight of the rate learning
layer is initialized as N(0, σ2) with σ � 1, and the bias
is initialized as ones. This initialization method makes the
convolution kernel start from the standard convolutions and
gradually adjust to the appropriate dilated rate. Through di-
lated mapping, the learned dilated rate are applied to each



position for convolving x0, which can be formulated as:

o0[i, j] =

M∑
m=1

N∑
n=1

x0[i+ r[i, j] ·m, j + r[i, j] · n] · h[m,n]. (2)

When the coordinates (i+ r[i, j] ·m, j+ r[i, j] ·n) are not at
grids, bilinear interpolation is utilized for approximation as in
[2]. Finally, the output o0 of adaptive dilated convolution is
concatenated with o1 for further processing. Compared with
the standard convolution operator, this dilated mapping en-
ables flexible-size receptive fields according to the semantic
information. Moreover, KAM incorporates context informa-
tion from deep semantic features to texture details, which can
alleviate the hole problem and suppress noises.

2.3. Joint Loss Function

2.3.1. Foreground and Background Loss.

We use focal loss [4] and Jaccard loss [8] to prevent the prob-
lem of foreground-background class imbalance. Assume yij
is the ground truth of pixel j in image i, its corresponding
probability predicted for correct class can be calculated by

pfij = e
W>

yij
xij+byij∑2

k=1 eW
>
k

xij+bij
, where W and b are weights and bias

in the fully connected layer. Then loss function of foreground
network can be formulated as :

Lfore = −
N∑
i=1

n∑
j=1

(1− pfij)
2 log(pfij)

N × n
+

pfijyij

pfij + yij − pfijyij
, (3)

where N denotes mini-batch size, and n denotes the number
of pixels in a dermoscopy image. The first term in Lfore is
focal loss, while the second one is Jaccard loss.

In background segmentation network, 1 − yij is ground
truth of background pixel j in image i. Similar to foreground
loss, background loss function is calculated as:

Lback = −
N∑
i=1

n∑
j=1

(1− pbij)
2 log(pbij)

N × n
+

pbij(1− yij)

(1− yij) + pbijyij
. (4)

This loss function can alleviate class imbalance problem,
and avoid additional procedures to re-balance pixels from
melanoma region and background.

2.3.2. Mutual Loss

To exploit complementary information among the foreground
network and background network, we introduce a constraint
by minimizing the similarity of predictions from two net-
works. In particular, we utilize Jensen-Shannon (JS) di-
vergence to measure the similarity of predictions from two
networks and propose an exclusion loss to enforce the pre-
dicted segmentations from two networks mutually exclusive.
The mutual loss thus can be formulated as:

Lmutual =
1

N × n

N∑
i=1

n∑
j=1

pfij

2
log

2pfij

pfij + (1− pbij)
+

1− pbij

2
log

2(1− pbij)

pfij + (1− pbij)
+

2p0ijp
1
ij

p0ij + p1ij
,

(5)

where the first and second terms in Lmutual are JS loss, and
the third one is the exclusion loss. By minimizing the mutual
loss, distributions of pfij and 1−pbij are constrained to be sim-
ilar, and the overlap of predictions from two networks tends
to be minimized. Mutual loss enhances the complementary
information within these two networks. Moreover, the pre-
diction around the boundary is prone to agree with ground
truth, and the problem of shrinks will be alleviated.

2.3.3. Extension to Semi-supervised Learning

The proposed complementary network can be extended to
semi-supervised learning. Under the semi-supervised learn-
ing setting, we use foreground loss and background loss for
labeled data and compute mutual loss for all training data.
Denote the labeled and unlabeled data as L and U , the total
loss function can be represented as

LTotal = Lfore
x∈L

+Lback
x∈L

+Lmutual
x∈D

, (6)

where D = L ∪ U . Therefore, the complementary network
can be not only optimized with pixel-level annotation, but also
supervised by dual networks collaboratively and jointly.

3. EXPERIMENTS AND RESULTS

We evaluated the proposed method on 2018 ISIC skin le-
sion segmentation dataset [1], which includes 2594 annotated
dermoscopic images. Fourfold cross validation was adopted
for the evaluation. The performance of segmentation was
evaluated by accuracy (AC), dice coefficient (DI), Jaccard in-
dex (JA) and sensitivity (SE). We implemented our model
with TensorFlow, and NVIDIA TITAN XP GPU was used
for training acceleration. Adam was chosen for optimization
with β1 = 0.5 and β2 = 0.999. Each mini-batch includes 4
samples in training phases. The learning rate was initialized
as 0.000001 and dropped by 0.1 every 40 epochs.

We first analyzed the influence of KAM, and showed the
learned dilated rate maps at 32 × 32 scale as in Fig.3. From
the heat map, it is clear that the receptive field is expanded at
the hole region, and the hole is disappeared in the final predic-
tions, indicating the proposed KAM is able to solve the hole
problem effectively. The receptive field around the boundary
is slightly enlarged, which makes the prediction expand to fit
the ground truth. Therefore, context information of holes and
boundaries is provided to help predict the class of local pix-
els, which alleviates hole as well as shrink problem and leads
to better segmentation performance.

Then we assessed the qualitative performance of our
complementary network by comparing it with state-of-the-art
methods [5, 6, 8]. We implemented these methods on our
dataset and visualized four examples in Fig. 4. It is clear
that our complementary network can appropriately fill holes,
while holes existed in the results of methods [5, 8]. Moreover,
segmentation results obtained by the complementary network



Fig. 3. Each row includes the original image, dilated rate map,
predictions and ground truth from left to right. Note that red
in heat map denotes a larger receptive field.

Fig. 4. Examples of complementary network results in com-
parison with other methods. The ground truth is denoted in
black. Results of [5], [6], [8] and ours are denoted in blue,
cyan, green, and red, respectively.

are better than that of other methods with smallest distance to
the ground truth.

We further analyzed the performance of our complemen-
tary network by comparing it with methods [5, 6, 8] under
the setting of fully supervised and semi-supervised learning,
respectively. Specifically, 3rd to 6th rows show fully super-
vised learning results with 1945 labeled images, while 8th to
11th rows report results with 649 labeled and 1296 unlabeled
images for our method and results with 649 labeled images
for other methods in Table 1. Under fully supervised setting,
the proposed method shows superior performance with an im-
provement of 2.7%, 0.2%, 1.6% in AC, 7.0%, 0.5%, 3.5% in
DI and 9.3%, 1.0%, 4.7% in JA compared with the existing
deep learning based methods [5, 6, 8], respectively. This re-
sult validated the proposed complementary network possesses
superior ability to alleviate hole and shrink problems for skin
lesion segmentation. Trained with the same labeled data, our
semi-supervised method exhibited a significant increment in
evaluation criteria compared with [5, 6, 8]. The increment is
more distinct than that of fully supervised methods, indicating
our method can leverage unlabeled images effectively.

4. CONCLUSION

In this paper, we propose a novel complementary network
with adaptive atrous convolution (AAC), knowledge aggrega-

Table 1. Comparison results for menaloma segmentation.
Fully supervised

Methods AC (%) DI (%) JA (%) SE (%)
Unet [5] 92.3±0.3 79.4±0.4 68.3±0.6 83.6±0.6

Sarker et al.[6] 94.8±0.1 85.9±0.3 76.6±0.6 87.9±0.5
Yuan et al.[8] 93.4±0.2 82.9±0.8 72.9±0.9 85.6±0.6
Our Method 95.0±0.6 86.4±1.3 77.6±1.9 86.9±1.0

Semi-supervised
Unet [5] 91.0±0.2 75.9±0.3 63.8±0.3 82.3±0.2

Sarker et al.[6] 93.5±0.1 83.0±0.4 74.2±0.5 87.7±0.5
Yuan et al.[8] 91.4±0.3 77.8±0.9 66.4±1.1 84.7±0.7
Our Method 94.4±0.2 85.0±0.6 75.9±0.9 85.0±1.7

tion module (KAM) and mutual loss, for melanoma segmen-
tation. Our network is able to alleviate the hole and shrink
problems existing in current methods. The proposed comple-
mentary network and mutual loss can be further extended to
semi-supervised learning, which is significant for medical im-
age segmentation due to the limited annotated data. AAC and
KAM can be flexibly transferred to other image segmentation
tasks to adaptively enlarge receptive fields and boost the seg-
mentation performance.
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