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ABSTRACT

We study the effect of the selection of diffeomorphic normal-
ization in the performance of Spasov’s deep-learning system
for the problem of progressive MCI vs stable MCI discrim-
ination. We considered different degrees of normalization
(no, affine and non-rigid normalization) and two diffeomor-
phic registration methods (ANTS and BL PDE-LDDMM)
with different image similarity metrics (SSD, NCC, and
lNCC) yielding qualitatively different deformation models
and quantitatively different degrees of registration accuracy.
BL PDE-LDDMM NCC achieved the best performing accu-
racy with median values of 89%. Surprisingly, the accuracy
of no and affine normalization was also among the highest,
indicating that the deep-learning system is powerful enough
to learn accurate models for pMCI vs sMCI discrimination
without the need for normalization. However, the best sensi-
tivity values were obtained by BL PDE-LDDMM SSD and
NCC with median values of 97% and 94% while the sensitiv-
ity of the remaining methods stayed under 88%.

Index Terms— CNNs, multi-task learning, diffeomor-
phic normalization, Alzheimer’s, pMCI vs sMCI

1. INTRODUCTION

Alzheimer’s disease is one of the most common neurodegen-
erative diseases [1]. This disease arises for still unknown rea-
sons and progresses relentlessly towards a devastating cog-
nitive condition. Research against neurodegeneration is ap-
proached in two antagonistic ways: while some researchers
work to develop treatments to slow or reverse the loss of cog-
nitive abilities, others are working on developing ways to di-
agnose the cause of dementia as early as possible. Although
our knowledge in Alzheimer’s disease has considerably in-
creased in the last two decades, the percentage of patients
that can benefit from current knowledge is limited compared
with the estimated population at risk. Many individuals can
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be diagnosed with probable Alzheimer’s when the disease has
started to manifest its symptoms, losing valuable time for pre-
ventive or early treatment.

Especially urgent is the case of subjects with progres-
sive mild cognitive impairment (pMCI). They are patients that
have started suffering a gentle cognitive decay that will accel-
erate until the disease develops over the next three years. We
need predictive biomarkers and accurate diagnostic tools of
the rates of cognitive decline for those individuals who exhibit
preclinical or prodromal symptoms. The quest for significant
biomarkers and the design of predictive diagnostic tools go
through manipulation of huge amounts of data for each pa-
tient. Therefore, clinical practice must ally with the compu-
tational tools that facilitate the processing of such amount of
data.

This work focuses on the problem of discriminating pro-
gressive vs stable MCI individuals (pMCI vs sMCI) with
computational tools. This problem has been previously ap-
proached using different combinations of biomarkers with
conventional machine learning methods [2, 3, 4, 5, 6, 7].
From them, the most discriminative power has been achieved
combining demographic and cognitive biomarkers, APOE
status, and anatomical MRI with accuracy ranging between
80 - 85% and sensitivity ranging between 80 - 89%.

The deep-learning explosion has reached the area of
computer-aided diagnosis with very powerful tools for the
discrimination of healthy vs diseased individuals and the
prediction of patient condition [8]. The problem of pMCI
vs sMCI has been recently approached using different deep-
learning systems in [9, 10]. The convolutional neural network
proposed in Spasov et al. [10] outperformed conventional ma-
chine learning methods. The fundamental problem faced by
this method was the scarcity of data, typical in medical ap-
plications. The authors approached the problem combining
pMCI vs sMCI with AD vs HC problems in a multi-task
learning framework. In addition, they proposed a parameter
reduction replacing 3D convolutions by separable convolu-
tions in the middle hidden layers of the network. The method
used the combination of the best performing biomarkers in
support vector machine (SVM) systems. MRI was selected
from imaging due to its less invasive nature. The MRI images
were normalized to a common reference system using affine



plus diffeomorphic registration, as it is customary in morpho-
metric methods such as Voxel, Tensor, or Deformation Based
Morphometry (V/T/DBM) [11]. The authors compared the
performance of the network combining clinical and genetic
data with typical inputs in V/T/DBM in the input stream, such
as the aligned MRIs, the Jacobian determinants, or both.

The authors also analyzed the robustness of the network
to variations in the selection of the reference system and the
location of the anatomical information, which have shown to
be crucial in V/T/DBM studies [12]. Thus, the performance
of the network was compared between the normalization to
a data-specific atlas and the MNI152 atlas. In addition, the
authors compared the use of skull-stripped images in the in-
put stream with masked images in the areas of most inter-
est in Alzheimer’s disease. In both cases, the network was
able to identify the most relevant features for the pMCI vs
sMCI problem showing a comparable accuracy. Although the
quality of the image registration is relevant in the outcome
of V/T/DBM studies, the robustness of the network to vari-
ations of the quality of diffeomorphic normalization was not
analyzed.

In this work, we study the effect of the selection of the
diffeomorphic normalization in the performance of Spasov et
al. deep-learning system for the problem of pMCI vs sMCI.
We have compared different degrees of normalization: no
normalization, affine normalization, and affine plus diffeo-
morphic normalization to the MNI152 atlas. We have in-
cluded in our study the following diffeomorphic registration
methods: 1) ANTS diffeomorphic registration [13] with Sum
of Squares Differences (SSD) and local Normalized Cross-
Correlation (lNCC), and 2) BL PDE-LDDMM [14] with SSD,
NCC, and lNCC.

2. DESCRIPTION OF THE CNN SYSTEM

2.1. Network architecture

We reproduced the network architecture proposed in [10].
The network combined 3D convolutional layers (3D-CNN)
with separable convolutional layers (sCNN) and fully con-
nected layers (FC) in nine hidden layers. For separable convo-
lution, we used the Keras layer based on TensorFlow provided
by the authors in https://github.com/simeon-spasov/MCI. The
system was fed with three different input streams that can be
activated independently. We combined demographic, cogni-
tive, and genetic data into a single input stream with clinical
information. The system was fed with the MRI and Jacobian
information separately, and concatenated before the separable
convolutions. The clinical stream was concatenated with the
output of the image-based FC layer in the deepest layer of
the system. No data augmentation procedures were used in
the system. In order to tackle the problem of data scarcity,
the network was used in two different classification prob-
lems. The first one was Alzheimer’s Disease (AD) vs Healthy

Control (HC) discrimination. The second one was our target
pMCI vs sMCI discrimination. Thus, the data available for
training, validation, and testing increased, and the confidence
of the network in the AD vs HC problem helps to improve
the performance in the more difficult pMCI vs sMCI task.
Fine details of the architecture and the implementation can be
found in [15, 10].

2.2. Datasets and preprocessing

The data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary goal
of ADNI is to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early
AD. The authors from [10] kindly provided us the IDs of the
individuals used in their study, facilitating reproducibility.
From them, 191 subjects belonged to AD, 181 to HC, 179 to
pMCI, and 227 to sMCI. It should be noticed that we used
a total of 778 individuals. This number differs slightly from
the 785 individuals used in [10] due to corrupted images and
lack of clinical data. From the seven missing individuals, two
belonged to pMCI class and just one to sMCI.

The T1 images from the baseline visit were used in
our study. The images were preprocessed using the stan-
dard pipeline proposed in [16] for neuroimaging studies.
The images were reoriented and affinely normalized to the
Montreal Neurological T1 Template (MNI152) atlas using
FSL package (https://fsl.fmrib.ox.ac.uk). The bias field was
corrected using the N4 method available in ANTS soft-
ware (http://stnava.github.io/ANTs). The images were skull
stripped using Robbex (https://www.nitrc.org/ projects/robex).
Finally, affine plus diffeomorphic normalization was per-
formed towards the MNI152 atlas.

2.3. Methods considered for diffeomorphic normaliza-
tion

2.3.1. Advanced Normalization ToolS

Advanced Normalization ToolS (ANTS) is a comprehen-
sive toolkit intended for rigid and diffeomorphic normal-
ization (http://stnava.github.io/ANTs/). The primary diffeo-
morphic registration method is based on Avants et al. SyN
registration [13]. The most relevant features of the method
are the symmetric steady approach to Large Deformation
Diffeomorphic Metric Mapping (LDDMM), the use of lNCC
similarity metric, and the use of a multiresolution approach
with kernel regularization of varying width. This method
has won the main unbiased and international competitions in
image registration in the last decade. ANTS is provided as
open-source C++ software, closely depending on the Insight



Toolkit (http://www.itk.org). The implementation is only
runnable on the CPU.

In this study, we consider two different image similar-
ity metrics: SSD and lNCC. For the same transformation
characterization, regularization, and optimization, the use of
lNCC image similarity usually outperforms SSD in typical
non-rigid registration evaluation frameworks [17]. Therefore,
the presumable worse registration accuracy of ANTS-SSD vs
ANTS-lNCC can be used to analyze the effect of the selection
of the diffeomorphic normalization in the performance of our
system.

2.3.2. Band Limited PDE-constrained LDDMM

Band Limited PDE-constrained LDDMM (BL PDE-LDDMM)
is the best performing method proposed in [14]. BL PDE-
LDDMM belongs to the family of physically meaningful
diffeomorphic registration methods. These methods model
the problem using a PDE-constrained variational formula-
tion that provides the versatility to impose different physical
models to the computed transformations by just adding the
PDEs associated with the problem as hard constraints. Nu-
merical optimization is approached in the form of inexact
Newton-Krylov methods which has shown an excellent nu-
merical accuracy and an extraordinarily fast convergence rate
in this framework. The band-limited parameterization is one
strategy successfully circumventing the huge computational
complexity of PDE-LDDMM methods without much loss in
the accuracy. Indeed, the method is implemented in the GPU.

In this study we consider three different image similarity
metrics: SSD, NCC, and lNCC. As happened with ANTS,
lNCC image similarity outperforms SSD in typical non-rigid
registration evaluation frameworks [17]. NCC and lNCC per-
form similarly.

3. RESULTS

In this experimental section, we study the effect of the selec-
tion of the diffeomorphic normalization in the performance of
our developed system for the problem of pMCI vs sMCI 1. We
consider as baseline the results obtained in Spasov et al. [10],
which is the best performing method in the state-of-the-art to
the date. Table 1 shows the median of the area under the curve
(AUC), the accuracy (ACC), the sensitivity (SEN), and the
specificity (SPE) obtained from independent test sets across
the 10-fold experiments for three different anatomical input
streams: the MRI images, the Jacobian determinant of the
diffeomorphic transformations, and the MRI images plus Ja-
cobian determinant. AUC was calculated by performing Re-
ceiver operating characteristic (ROC) on each fold, and all
accuracy,sensitivity and specificity metrics are reported at the
optimal operating point of the ROC curve obtained via the

1It should be noticed that our system obtained 100% scores in the AD vs
HC problem.

Table 1. Median of the performance metrics on the pMCI vs sMCI
problem using our deep-learning implementation with the variants
considered for diffeomorphic normalization.

Normalization Anat. data AUC ACC SEN SPE
Unregistered MRI 0.92 88 81 88
Affine MRI 0.94 89 88 94
ANTS-SSD MRI 0.90 86 84 88
ANTS-lNCC MRI 0.90 84 88 81
BL PDE-LDDMM SSD MRI 0.90 88 97 81
BL PDE-LDDMM NCC MRI 0.94 89 94 91
BL PDE-LDDMM lNCC MRI 0.89 84 84 91
ANTS-SSD Jac 0.86 83 84 84
ANTS-lNCC Jac 0.83 80 72 88
BL PDE-LDDMM SSD Jac 0.87 86 84 84
BL PDE-LDDMM NCC Jac 0.90 88 88 81
BL PDE-LDDMM lNCC Jac 0.91 86 91 81
ANTS-SSD MRI + Jac 0.89 84 88 81
ANTS-lNCC MRI + Jac 0.88 83 88 84
BL PDE-LDDMM SSD MRI + Jac 0.90 84 88 81
BL PDE-LDDMM NCC MRI + Jac 0.91 88 88 88
BL PDE-LDDMM lNCC MRI + Jac 0.94 89 91 88

Table 2. Median of the performance metrics on the pMCI vs sMCI
problem obtained in Spasov et al. [10].

Normalization Atlas Anat. data AUC ACC SEN SPE
ANTS-lNCC MNI152 MRI 0.91 85 82 87
ANTS-lNCC MNI152 Jac 0.88 82 82 81
ANTS-lNCC MNI152 MRI + Jac 0.89 83 77 86
ANTS-lNCC data-specific MRI 0.92 86 87.5 84
ANTS-lNCC data-specific Jac 0.87 83 84 78
ANTS-lNCC data-specific MRI + Jac 0.91 83 87 81

Youden’s J statistic. Table 2 shows the results obtained in [10]
for the same input streams and diffeomorphic normalization
using ANTS-lNCC with respect to MNI152 atlas and a data-
specific atlas.

The best performing anatomical input stream was com-
pound by the MRI images for almost all the normalizations.
This result corroborates the results obtained in [10]. For
the MRI input stream, the accuracy obtained by our sys-
tem overpassed the 86% obtained by the baseline system
except in the lNCC cases. Interestingly, the use of no dif-
feomorphic normalization and affine normalization achieved
an accuracy of 88 and 89%, respectively, reaching the per-
formance of the best diffeomorphic normalization method
BL PDE-LDDMM NCC. For the same image similarity met-
ric, BL PDE-LDDMM normalization overpassed ANTS. For
BL PDE-LDDMM the NCC image similarity metric outper-
formed SSD and lNCC. One tailed Mann-Whitney U test did
not report statistical significance for BL PDE-LDDMM NCC
(p-values between 0.18 and 0.63). For affine registration
statistical significance was found for ANTS-SSD, ANTS-
lNCC, and BL PDE-LDDMM lNCC (p = 0.07, 0.05, and
0.07 respectively). For the Jacobian and MRI plus Jacobian
input streams, BL PDE-LDDMM with NCC and lNCC image
similarity were the best performing methods, respectively.

For the MRI input stream, the sensitivity of our system



Fig. 1. Box plots for the ACC, SEN, and SPE obtained over the 10-folds in the case of MRI anatomical input stream. The
benchmark reproduces the results of Figure 6 in [10] for the MRI and clinical input stream.

was under 90% for no normalization, affine, ANTS, and BL
PDE-LDDMM with lNCC normalization. The sensitivity
of BL PDE-LDDMM with SSD and NCC reached values
ranging from 94 to 97%. Statistical significance was found
with respect to no, ANTS-SSD, ANTS-lNCC, and BL PDE-
LDDMM lNCC (p= 0.01, 0.05, 0.09, and 0.01, respectively).
The best specificity values were obtained by no and affine
normalization, with a median of 94% sMCI subjects correctly
identified. Statistical significance was found with respect to
no, ANTS-lNCC, and BL PDE-LDDMM SSD (p= 0.00 and
0.03). For the Jacobian and MRI plus Jacobian input streams,
it is remarkable the sensitivity of BL PDE-LDDNN lNCC
method with 91%.

Figure 1 shows in the shape of box-and-whisker the per-
formance values over the 10-folds obtained by the different
diffeomorphic normalization in the case of MRI input stream.

4. DISCUSSION AND CONCLUSIONS

In this work, we have studied the effect of the selection of the
diffeomorphic normalization in the performance of Spasov et
al. deep-learning system for the problem of pMCI vs sMCI
identification. We have compared different degrees of nor-
malization ranging from no normalization to affine plus dif-
feomorphic normalization As anatomical input streams we
have used the aligned MRIs, Jacobian determinants, or both.

We have studied the performance of two different families
of diffeomorphic registration methods: celebrated ANTS dif-
feomorphic registration [13] and an efficient version of physi-
cally meaningful LDDMM, BL PDE-LDDMM [14]. We have
implemented BL PDE-LDDMM with different image similar-
ity metrics providing an interesting variability of accuracies in
traditional registration evaluation studies [17].

We were able to roughly reproduce the results presented
in [10] despite the complexity of the pipeline (see Fig. 1).
In addition, we corroborated the robustness of the network to
variations in the selection of the reference system and the use
of MRI as the best performing anatomical input stream.

The best performing diffeomorphic normalization was ob-
tained with BL PDE-LDDMM with NCC image similarity.

Surprisingly, the accuracy achieved by the no and affine nor-
malization was similar to the accuracy achieved by BL PDE-
LDDMM NCC. This indicates that the deep-learning system
is powerful enough to learn accurate models for pMCI vs
sMCI discrimination without the need for normalization. In
contrast, less powerful systems need the non-rigid alignment
of the images in order to discriminate the MCI patients from
the anatomical features [4, 6].

Regarding the sensitivity of the system, the best values
were obtained by BL PDE-LDDMM with the global image
similarity metrics (SSD and NCC). It seems that non-rigid
normalization with a physically meaningful deformation
model may be translated into values of sensitivity better
than ANTS deformation model. In addition, it seems that
the use of no or affine normalization may be translated into
a worse capacity to predict pMCI individuals. For ANTS
diffeomorphic registration, the better registration accuracy of
lNCC image similarity is translated into a better sensitivity.
However, for BL PDE-LDDMM the worst sensitivity was
precisely obtained with the lNCC metric. Paradoxically, the
sensitivity with the lNCC metric and the Jacobian involved
input streams was the highest. We need further experimenta-
tion to find out why is BL PDE-LDDMM lNCC decreasing
the prediction capacity of pMCI individuals for the MRI input
streams.

The best specificity results were achieved by the no and
affine normalization, followed by BL PDE-LDDMM with
NCC and lNCC metrics. We believe that since sMCI group
includes different classes of cognitively impaired individuals,
the diffeomorphic alignment may not be contributing to better
identification of the stable individuals.

These results position BL PDE-LDDMM over ANTS
for diffeomorphic normalization in Spasov et al. system for
the problem of pMCI vs sMCI and leave open the ques-
tion of whether performing no or affine normalization would
be enough for the system to obtain overall satisfactory re-
sults. In future work, we will extend our comparison to the
whole ADNI project and we will evaluate the performance of
the system with other families of diffeomorphic registration
methods with underlying interesting deformation models.
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