
SPATIALLY INFORMED CNN FOR AUTOMATED CONE 
DETECTION IN ADAPTIVE OPTICS RETINAL IMAGES

Heng Jin1,2, Jessica I.W. Morgan3,4, James C. Gee2, Min Chen2

1School of Automation Science and Electrical Engineering, Beihang University, China

2Department of Radiology, University of Pennsylvania, USA

3Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, USA

4Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, USA

Abstract

Adaptive optics (AO) scanning laser ophthalmoscopy offers cellular level in-vivo imaging of the 

human cone mosaic. Existing analysis of cone photoreceptor density in AO images require 

accurate identification of cone cells, which is a time and labor-intensive task. Recently, several 

methods have been introduced for automated cone detection in AO retinal images using 

convolutional neural networks (CNN). However, these approaches have been limited in their 

ability to correctly identify cones when applied to AO images originating from different locations 

in the retina, due to changes to the reflectance and arrangement of the cone mosaics with 

eccentricity. To address these limitations, we present an adapted CNN architecture that 

incorporates spatial information directly into the network. Our approach, inspired by conditional 

generative adversarial networks, embeds the retina location from which each AO image was 

acquired as part of the training. Using manual cone identification as ground truth, our evaluation 

shows general improvement over existing approaches when detecting cones in the middle and 

periphery regions of the retina, but decreased performance near the fovea.
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1. INTRODUCTION

Adaptive optics (AO) scanning light ophthalmoscopy (SLO) [1, 2] is a cutting-edge retinal 

imaging modality that offers high resolution in-vivo images of photoreceptors in the human 

retina. While AOSLO has the capability to monitor and study cellular level change in the 

retina, accurate identification of cone photoreceptors within each AO image is required for 

such analysis. This task, generally performed by a human grader, is both labor and time 

intensive, placing limitations on both the scale and timeframe of potential AO imaging 

studies. [3] Recently, convolution neural network (CNN) based approaches have been 

proposed for the automated detection of cones in confocal and split detector AOSLO 

images. [4–6] In these methods, CNN is used to generate the probability that a pixel location 

in an image belongs to a cone in order to create a cone probability map for each AO image. 
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The algorithm then detects the local maxima in the probability maps and identify them as 

cones. However, these approaches are shown to be less effective when operating on AO 

images acquired from different regions of the retina. This limitation is a result of changes to 

the reflectance and density of cones with respect to its distance from the fovea. [3] Cones are 

smaller and more tightly packed near the fovea but become larger and more spread out as 

distance from the fovea increases. In the perifoveal and peripheral locations, rod 

photoreceptors become more visible, resulting in potential false positive identifications.

To address these limitations, Cunefare et al. proposed RAC-CNN [6], which has several 

advantages over previous designs. First, it uses a semantic, U-net [7] architecture to produce 

whole image probability maps, which drastically reduce the computation time relative to 

previous patch-based designs [4]. Second, it used two different AO modalities (confocal [1] 

and split detector [2]) as the input data, allowing the network to use multi-modal information 

to aid the identification. Lastly, it incorporated manual identification of rod photoreceptor to 

train the network to also find rods within the AO images. This allowed the method to both 

reduce false positive cone detection, and indirectly provide contextual information regarding 

the location of AO image in the retina (since the number of rods in the image corresponds 

with how far away the region is from the fovea).

While RAC-CNN offered improved performance and speed over previous CNN based cone 

detection approaches, its general usability decreased due to its reliance on the ability to 

observe rods within the images. In general, image quality and motion artifacts often prevent 

the acquisitions of images where rods are fully visible. The appearance of rods can range 

dramatically within the same image, with some being fully resolved, while others are 

heavily distorted, blurred, or not visible at all. This is particularly true for patient data, which 

tend to be of lower image quality, and where the pathology can directly interfere with 

observation of such structures in the image. As a result, rods within an image often cannot 

be accurately identified even by human grader.

In this work, we build upon the advancements made in RAC-CNN but have removed the 

need for rod identification to provide contextual information for the identification. Instead, 

we have adapted the architecture to directly incorporate additional spatial information to 

inform the network on where each AO image originated from in the retina. Our approach, 

inspired by conditional generative adversarial networks (cGAN) [8], allows the network to 

associate specific patterns of cone reflectance with their respective location in the retina. 

This allows the network to differentiate between cones from the periphery and the cones 

from the fovea, whereas previously, cones from both locations would have been treated the 

same. Fig. 1 shows a high-level diagram of our algorithm design.

2. METHOD

2.1. CNN

Our network architecture (Fig. 2) builds upon the RAC-CNN [6] design, which uses two U-

nets [7] to process confocal and split detector images separately and concatenate them in a 

mixing layer. Each U-net is made up of 3 encoder blocks, a transition block and 3 decoder 

blocks. Skip connections exist from each encoder block to the corresponding decoder block. 
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Each encoder block has a convolutional layer, a batch normalization layer, a Rectified Linear 

Unit (ReLU) layer and a max pooling layer in sequence. The transition block consists of a 

convolutional layer, a batch normalization layer and a ReLU layer. Finally, each decoder 

block has a deconvolutional layer, a concatenation layer, a convolutional layer, a batch 

normalization layer and a ReLU layer in sequence.

For all convolutional layers in the U-nets, we used 64 kernels with size 5×5×D (where D is 

the size of the third dimension of the input feature map). The max pooling layers 

downsample the width and height of the input feature maps by half. All deconvolutional 

layers have 64 kernels with size 5×5×D, which then upsample the input feature maps to their 

original dimensions. In order to better combine feature maps with spatial information 

(described below), our mixing layers consists of 3 convolutional layers (all 1×1×D, with 

D=16, 1 and 2, respectively) and 2 ReLU layers in cross arrangement, ending up with a 

SoftMax layer. Lastly, RAC-CNN [6] uses cross-entropy as its loss function, however in our 

experiments, we found that using the Dice’s coefficient of the cones provided better results 

and faster computation times. Since the cone locations in the training data represent single 

points on the image, we convert each location into labels in a pair of background and 

foreground label maps. On the foreground image, we place a circular label with a radius of 

0.1M centered on each cone location, where M is the shortest distance between cone 

locations in the image, as calculated by a k-Nearest Neighbor algorithm. The background 

label map is then set as the complimentary of the foreground map.

2.2. Incorporating Spatial Information

To incorporate spatial information into our network, we drew inspiration from conditional 

generative adversarial networks [8], which adds conditional information as an additional 

input layer into its generator and discriminator. Following this idea, we added an input layer 

consisting of the retinal location of the image into the beginning of the U-Nets and at the 

start of the mixing layers. The dimensions of the spatial information input are the same as 

other input maps at each respective layer, and the retinal location the image was acquired 

from is linearly encoded to be between 0 and 1, where 0 is the location of the fovea, and 1 is 

the furthest retinal location in our images (~2500 μm).

2.4. Cone Detection

We followed the approach described by Cunefare et al. [4] to convert the probability maps 

from our network output into cone locations. The output from our network consists of two 

probability maps, representing the probability that each pixel location belongs to a cone 

photoreceptor center or the background. We extract the cone probability map and smooth it 

with a Gaussian kernel (σ=0.8) in order to filter out potential noise and small local maxima 

in the probability map. We then apply an extended-maximal transform using MATLAB’s 

imextendedmax function to find connecting maximal regions where probability differences 

are below 0.6 and remove weak candidates by thresholding values below 0.7. Finally, using 

a clustering algorithm, we find the cone center location. All parameters used in our 

algorithm were selected empirically using our training dataset.
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3. EXPERIMENTS

3.1. Data

121 pairs of confocal and split detector AO images were acquired from the eyes of 12 

healthy subjects using a previously described protocol. [3,9] The images were separated into 

a training and validation dataset. The training dataset consisted of 99 images of each 

modality and was used in the development and training of the CNN. The validation dataset 

consisted of 22 images of each modality and left out of the development process until the 

final evaluation. All images in both datasets were cropped to the size of 200×200 pixels. For 

each image, manual ground truth cone locations were identified by a trained human grader.

3.2. Validation

We evaluated our network using the validation dataset by comparing the cones identified by 

the algorithm against the manual ground truth. As a comparison to the proposed algorithm, 

we also used the validation dataset to evaluate the performance of the openly available CNN 

algorithm presented by Cunefare et al. [4] and the performance of the proposed algorithm 

when not using spatial information. Without spatial information, our method closely 

resembles the design presented for RAC-CNN [6], but without the use of rod photoreceptor 

location inputs. (RAC-CNN was not made openly available for a direct comparison.)

To evaluate the performance of each algorithm, we calculated the true positive rate, false 

discovery rate, and Dice’s coefficient between the algorithm and manual cone identification 

in each image. These measures were evaluated as follows: For each cone location coordinate 

(CAutomatic) identified in the algorithm result (RAutomatic), we used a k-Nearest Neighbor 

(KNN) algorithm to find the nearest coordinate (CManual) match from the manual result 

(RManual) for the same image, if the distance between the matched automated and manual 

coordinate was less than L/2, we would define this match as correct. L is a distance 

threshold that determines when two coordinates are located on the same cone. For this 

evaluation, we chose L as the mean shortest distance between the manual cone coordinates, 

which was also calculated using KNN. After all of the CAutomatic were matched, we counted 

the number of correct matches as true positives (NTP), the number of CAutomatic which didn’t 

have a corresponding manual match as false positives (NFP), and the number of CManual 

which weren’t matched to by the algorithm as false negatives (NFN). Using these values, we 

calculated the true positive rate, false discovery rate, and Dice’s coefficient to evaluate the 

performance of each result.

Fig. 3 shows examples of this analysis on confocal AO images from different locations of 

the retina. The cones detected by each algorithm (and their accuracy relative to the manual 

grader) is shown on each image. Fig. 4 shows the mean performance of each algorithm with 

respect to the retinal location of the AO images, over the validation dataset.

3.3 Computation Time

All three algorithms were evaluated on a laptop PC with an i5–8300H CPU, 8 GB of RAM, 

and a NVIDIA GeForce GTX 1050Ti GPU. Cunefare et al. [4] was ran in MATLAB R2018a 

and MatConvNet. Our method with and without spatial information were ran on Python 3.6 
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and TensorFlow. Table 1. shows the mean and standard deviation of the computation time 

for each of the three algorithms when run on the validation dataset.

4. DISCUSSION

In Fig. 4 we see that the relative performance of the three algorithms differed depending on 

the retinal eccentricity of the AO images. On average, our proposed algorithm had higher 

true positive rate and Dice, and lower false discovery rate than the other algorithms for 

images far away from the fovea (>750μm). However, for regions near the fovea (<250μm), 

Cunefare et al.’s [4] algorithm performed the best on average. For the proposed algorithm, 

much of the errors in this region was a result of producing more false negative detection near 

the fovea. We believe this may be a result of the dense cone structure near the fovea causing 

the probability maps from the semantic architecture to be more blurred, resulting in dark 

regions being marked as cones. Cunefare et al.’s [4] algorithm is likely less affected by this 

due to the patch-based windowing during the detection. Fig. 4 also demonstrates the impact 

of using spatial information as an additional input. In general, we see that adding spatial 

information increased the algorithm’s performance (by all three measures) on images from 

regions away from the fovea (>250 μm). However, the additional information did not appear 

to change the performance of the algorithm near the fovea (<250 μm). This suggests that the 

spatial location information was able to help specify changes to the appearance of cones 

across different eccentricities.

Table 1 shows that on average the proposed algorithm is about twice as fast as the method by 

Cunefare et al. [4]. This was expected since the semantic U-Net design operates on the 

whole image, whereas Cunefare et al.’s approach [4] needs to expand the images into 

multiple batches before input, which increases the size of the input feature map. When 

comparing between using and not using the spatial information, we observed a ~15% 

increase in runtime. Again, this is expected due to the additional input channel. However, 

this increase in computation time was offset by the performance gained. Lastly, Table 1 

shows that the standard deviation of the proposed algorithm was larger than Cunefare et al.’s 

[4] method, but the sum of the mean and first standard deviation for both algorithms were 

roughly equivalent. This showed that the proposed method was able to improve the runtime 

on the majority of the images while keeping close to the same runtime for the remaining 

images.

5. CONCLUSIONS

In this work, we introduced a CNN design that uses retinal location information to assist 

cones photoreceptors detections within the AO image. Our results suggest that providing 

spatial information to the network can improve cone detection in peripheral images with 

relatively little increase in computation time. Future work will focus on reducing additional 

false positive detection in the foveal images when using the proposed network.
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Figure 1. 
Diagram of the proposed algorithm for automated cone detection in AO images.
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Figure 2. 
Diagram of the CNN architecture used in the proposed method.
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Figure 3. 
Examples of cones identified using Cunefare et al. [4], and our proposed method with and 

without spatial information on confocal AO images at different eccentricities. The dots 

overlaid on each image show each algorithm’s true positives (green), false positives (red), 

and false negatives (yellow), relative to the manual ground truth.

Jin et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Mean true positive rate, false discovery rate, and Dice’s coefficient of the three algorithms’ 

cone detection results compared to the manual cone identifications. Each plot shows the 

mean results for images within a specific range of eccentricity in the retina.
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Table 1

Mean runtime of each algorithm on the validation dataset.

Runtime Cunefare et al. [4] Without Spatial Information With Spatial Information

Mean 3.763s 1.329s 1.524s

Standard Deviation 0.221s 2.674s 1.408s
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