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ABSTRACT 

 
Although diffusion tensor imaging (DTI) can identify white 
matter (WM) alterations due to mild cases of traumatic brain 
injury (mTBI), the task of within-subject longitudinal 
matching of DTI streamlines remains challenging in this 
condition. Here we combine (A) automatic, atlas-informed 
labeling of WM streamline clusters with (B) streamline pro-
totyping and (C) Riemannian matching of elastic curves to 
quantitate within-subject WM changes, focusing on the ar-
cuate fasciculus. The approach is demonstrated in a group of 
geriatric mTBI patients imaged acutely and ~6 months post-
injury. Results highlight the utility of differential geometry 
approaches when quantifying brain connectivity alterations 
due to mTBI. 
 

Index Terms— Traumatic brain injury, diffusion tensor 
imaging, Riemannian matching, elastic curve 
 

1. INTRODUCTION 
 
Mild traumatic brain injury (mTBI) impacts over 1.7 million 
Americans every year, and its all-time prevalence in US 
adults has been estimated to exceed 10% [1]. Whereas the 
magnetic resonance imaging (MRI) of moderate-to-severe 
TBI is frequently positive for intraparenchymal hemorrhage 
and mass edema, the MRI readings of mTBI patients are 
often free of such findings despite victims’ persistent neu-
rocognitive deficits as late as one year after injury. mTBI 
frequently results in traumatic axonal injury (TAI) despite 
the absence of gross pathology on T1- and T2-weighted MRI, 
such that there has been increasing interest in mapping the 
effects of mTBI upon the white matter (WM) connectivity 
of the brain over time [1].  

MRI studies of mTBI have frequently leveraged diffu-
sion MRI (dMRI) to quantify the fractional anisotropy (FA) 
of water in the brain and to indicate that relatively-low FA 
may be indicative of TAI [2]. Although some research has 
focused on identifying (sub-) acute mTBI effects upon WM, 
few investigations have studied such phenomena longitudi-
nally. One key reason for this is the scarcity of dependable 
techniques for longitudinal evaluation of WM connectivity 
using dMRI. Tract-based spatial statistics (TBSS) is a well-
known approach for comparison within and across subjects, 

and this technique is available within the FMRIB Software 
Library (FSL) software library. Although appropriate for 
voxel-by-voxel analysis of WM properties, TBSS is inade-
quate for the quantification of FA alterations along WM 
streamlines. By contrast, a method called tract-based mor-
phometry (TBM) utilizes a detailed dMRI-based WM atlas 
to enable the identification of WM fasciculi across and with-
in subjects, in addition to their categorization into WM bun-
dle clusters [4]. If used together with streamline prototyping 
[5], this approach allows the identification of WM connec-
tions fiducially to quantify changes in FA.  

When comparing WM streamline properties longitudi-
nally using dMRI, one important operation involves the 
matching of WM streamlines across time points. In this con-
tribution, we propose that this task can be addressed using a 
novel combination of three sequential procedures, i.e. (A) 
automatic, atlas-informed labeling of WM streamline clus-
ters, (B) streamline prototyping, and (C) modeling stream-
line prototypes as elastic curves which undergo Riemannian 
matching to calculate point-to-point correspondence. In this 
last step, points along (A) a streamline whose trajectory is 
inferred from dMRI data acquired at an initial (acute) 
timepoint are matched to corresponding points along (B) the 
streamline’s trajectory as imaged at a second (chronic) 
timepoint. The approach is demonstrated in a group of geri-
atric mTBI victims imaged both acutely (within two weeks 
after injury) and chronically (about 6 months after injury). 
Our results highlight the utility of scale-invariant elastic 
curve matching for the quantification of WM alterations 
associated with mTBI in a geriatric patient population.   
 

2. METHODS 
 
2.1. Participants 
 
The study received approval from the Institutional Review 
Board of the University of Southern California. All partici-
pants gave written informed consent. Participants had suf-
fered an mTBI ~6 months (mo) before data acquisition (µ = 
5.6 mo, σ = 0.2 mo) and had had acute Glasgow Coma Scale 
(GCS) scores over 12. They were older adults (N = 21; 8 
females; age: µ = 66.2 y, σ = 7.8 y, range: 50-79 y) with no 
history of psychiatric or neurological prior to mTBI.  
 



2.2. MRI acquisition 
 
Anatomic T1-, T2-MRI and dMRI volumes were acquired at 
3 T (Prisma MAGNETOM Trio TIM, Siemens Corp., Er-
langen, Germany). T1-weighted images were obtained by 
means of a 3D magnetization-prepared rapid acquisition 
gradient echo (MP-RAGE) sequence [parameters: repetition 
time (TR) = 1.95 s; echo time (TE) = 2.98 ms; inversion time 
(TI) = 900 ms; voxel size = 1.0 × 1.0 × 1.0 mm]. T2-
weighted images were obtained using a 3D sequence (TR = 
2.5 s; TE = 360 ms; voxel size = 1.0 × 1.0 × 1.0 mm). Diffu-
sion MRI volumes were obtained in the axial plane and in 
64 gradient directions (TR = 8.3 s; TE = 72 ms; voxel size = 
2.7 × 2.7 × 2 mm). A volume with b = 0 s/mm2 and one with 
b = 1,000 s/mm2 were also obtained. All data were de-
identified after their acquisition. 
 
2.3. Preprocessing 
 
Motion and eddy current artefact corrections were imple-
mented using the FSL toolbox (fsl.fmrib.ox.ac.uk/fsl). Ex-
tra-cerebral voxels were excluded from analysis using the 
FSL brain extraction tool (BET). Diffusion tensor estima-
tion, dMRI two-tensor tractography and FA computations 
were carried out in 3D Slicer (slicer.org). WM bundles 
shorter than 4 cm were discarded. This threshold was select-
ed because the dMRI clustering algorithm is not optimal for 
processing relatively short streamlines whose length is be-
low this empirically inferred threshold.  
 
2.4. WM parcellation  
 
An atlas for streamline clustering [3] was used to implement 
WM streamline parcellation. Briefly, the atlas facilitates 
WM connectivity parcellation into 800 clusters. An annota-
tion method which leveraged population-based brain ana-
tomical information and expert neuroanatomical knowledge 
was used to annotate and categorize streamline clusters. 
WM structure annotation was implemented in an atlas in-
corporating deep WM bundles—not excluding important 
long-range projection and association bundles— bundles 
related to cerebellar connections, commissural bundles and 
bundles connecting the brainstem, and both medium- and 
short -range superficial clusters categorized based on their 
inter-lobar connectivity. Potential type I errors were marked 
to enable their exclusion.  
 
2.5. Streamline prototyping  
 
Upon parcellation, each cluster’s representative streamline 
was found using an approach for streamline prototyping [4-
6]. Briefly, this strategy can be used for each cluster to ena-
ble the identification of a single WM streamline whose path, 
torsion and similar properties are typical of the cluster’s 

streamlines. Prototyping is needed in part because dMRI 
tractography can generate artefactual streamlines which do 
not correspond to physical connections. Thus, the streamline 
cluster prototype is a more trustworthy descriptor of a clus-
ter’s true WM structure.  
 
2.6. Streamline projection 
 
Before quantifying WM changes across timepoints, the 
weighted average FA along the mean trajectory of each 
cluster’s streamlines was computed as follows. First, a 
weighted mean FA was calculated based on information 
provided at each dMRI voxel within the spatial extent of the 
cluster. The weighting reflected the extent to which stream-
lines in the cluster shared the trajectory and length of the 
prototype. Second, the weighted mean FA values were as-
signed to points along the cluster’s prototype streamline; 
this ensured that FA values along the prototype streamline 
were weighted averages of FA values along the trajectories 
of cluster streamlines. Thus, the streamline prototype fiber 
reflected not only the weighted average of cluster streamline 
trajectories, but also the weighted average of the FA along 
these streamlines. Because calculating the weighted average 
of streamline FA values along the prototype streamline can 
be conceptualized in terms of ‘projecting’ the FA values 
along individual streamlines upon the prototype streamline, 
we refer to this process as streamline projection.  
 
2.6. Curve matching 
 
After streamline projection, the curves associated with each 
cluster’s streamline prototype—as resolved at each time 
point—were matched. This step was necessary because 
streamline prototypes’ trajectories can vary subtly across 
time points even within the same subject. Thus, to obtain an 
accurate calculation of FA differences across time points, 
vertices along prototype trajectories must be matched across 
time points. To address this curve matching task, we model 
streamline prototypes as shapes using square root velocity 
functions (SRVFs), i.e. as elements in a space of curves with 
an infinity of dimensions [7-9]. The space is described by an 
appropriate Riemannian metric defined on the tangent space.  

Shape matching between streamlines is enabled by cal-
culating shortest length paths (i.e. geodesics) between 
shapes. The geodesic measures path length and quantifies 
the geometric distance between shapes; it also represents the 
best geometric deformation highlighting anatomical differ-
ences between them. Instead of computing maximum densi-
ty paths of streamline bundles and computing geodesics 
between them across subjects, we compute instead geodes-
ics within subjects but across time points. The mathematical 
details of Riemannian curve matching as related to our con-
tribution are described elsewhere [7-9].  



3. RESULTS AND DISCUSSION 
 
All 21 older adults included in the analysis had their WM 
fasciculi segmented, prototyped and matched across time 
points. Leveraging the methodological approach proposed 
here enabled the identification of time-related FA decreases 
ranging from ~1% to ~17% of their initial values. Across 
subjects, 13.2% ± 2.9% of all clusters had mean FA values 
which decreased by a mean of 11.8% ± 5.3% within the first 
six months after injury. FA decreases were identified 

throughout the WM, particularly in the inferior inferior lon-
gitudinal, fronto-occipital and superior longitudinal fascicu-
li. This is unsurprising because these relatively long WM 
bundles encompass much of the anteroposterior axis of the 
cortex. The bundles’ relationship with FA changes may re-
flect coup-contrecoup effects due to fronto-occipital TBI, 
which is known to be relatively frequent [10]. Figure 1 pro-
vides a conceptual summary of the procedures utilized to 
implement (A) automatic WM segmentation, (B) streamline 
prototyping, (C) the alignment of individual prototype 

 
Figure 1. Longitudinal comparison and quantification of WM streamlines using DTI and Riemannian matching of elastic curves. Each column displays
results from a different subject. (A). Automatically segmented streamlines of the arcuate fasciculus (AF) are superimposed to a skull-stripped, T1-weighted
sagittal slice of the brain. Color encodes streamline orientation at each location (red: left to right; green: anterior to posterior; blue: inferior to superior). (B)
Streamline prototypes are calculated for AF clusters both at the acute time point (red, within two weeks post-injury) and at the chronic time point (yellow,
~6 months post-injury). (C) Separate depictions of sample pairs of prototype streamlines from each subject highlight inter-subject variability in prototype
length and trajectory. (D) Riemannian matching of elastic curves facilitates the process of identifying a point-to-point correspondence between the prototype
streamlines associated with the acute (red) and chronic (yellow) time points, respectively. Intermediate steps of the matching process are drawn using differ-
ent colors from a palette ranging from red to yellow and indicating the transition from the first to the second time point (see arrow directions). Curves may
not look identical when comparing (C) to (D) because the angle from which they are viewed in (D) is chosen to facilitate visualization of all intermediate
steps of the curve matching process with minimum overlap.  



streamlines, and (D) the calculation of a point-to-point cor-
respondence using Riemannian matching of elastic curves. 
The figure shows results for three representative subjects: a 
56-yo male, a 56-yo female, and a 70-yo male (first, second 
and third columns, respectively). The arcuate fasciculus 
(AF) is selected for illustration in (A) due to its characteris-
tic shape, whose streamlines curve together in the vicinity of 
the temporo-parieto-occipital junction to connect Broca’s 
and Wernicke’s areas. In (B), the individual variability in 
AF trajectories across subjects is made apparent. Prototype 
streamlines are displayed in red for the acute time point and 
in yellow for the chronic time point. The number of proto-
types is equal to the number of automatically segmented 
WM clusters assigned to the AF by the streamline labeling 
procedure. Visual inspection of (C) underscores the fact 
that, even within the same WM cluster, streamline prototype 
trajectories vary across time points; this highlights the need 
for implementing curve matching to calculate a point-to-
point correspondence. (D) visually captures the curve 
matching process by displaying not only the two curves 
which are matched (red and yellow), but also intermediate 
steps of the matching process (see Figure). Because alterna-
tive strategies for longitudinal dMRI analysis are very dif-
ferent from our own, it is difficult to compare the present 
method to previous results in the literature. TBSS, for ex-
ample, performs voxel-wise analysis but cannot make infer-
ences pertaining to DTI-derived WM streamlines. Similarly, 
comparing the average FA of an entire structure (e.g. the 
AF) across time points may not be appropriate due to the 
potential effects of artefact variability across scans; it also 
may not be meaningful due to the substantial range of FA 
values within large WM structures. Nevertheless, further 
comparison of this method with prior methods should be 
undertaken in the future. Additionally, the method should be 
used to study healthy cohorts both in aging and develop-
ment.  
 

4. CONCLUSION 
 
Because TBI is a highly heterogenous neurological condi-
tion, WM structures are differentially impacted by injury. 
Although mTBI patients’ neurocognitive sequelae can be 
strikingly similar, hardly any patients experience identical 
injury patterns. Using a combination of (A) automatic, atlas-
informed labeling of WM streamline clusters, (B) streamline 
prototyping and (C) Riemannian matching of elastic curves, 
we have quantified within-subject changes in WM structure 
properties and found substantial WM changes in a subset of 
WM bundles. Our results not only support the hypothesis 
that mTBI is associated with FA decreases, but also provide 
an illuminating demonstration of how our unique combina-
tion of quantitative approaches can be used to identify WM 
degradation after brain injury.  
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